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Abstract 

Globally rising urbanization rates and population growth makes cities the most important 

future human living environment. Various remote sensing data sets and methods are already 

applied in a worldwide research on urbanization processes at different spatial scales. This 

study uses multi seasonal NASA Landsat satellite data from five time steps (1986 to 2011) in 

order to evaluate the potential of subpixel information using iterative spectral mixture analysis 

for historic urban monitoring in Ouagadougou, Burkina Faso. It places itself between studies 

using manual digitalization or conventional image classification on medium resolution data 

and those using high resolution imagery or supportive Radar data sets. The study region’s 

high annual seasonality in precipitation and high rainfall dependency of vegetation 

recommend an approach considering multi seasonal data from both dry and rain season. This 

is supposed to reveal seasonal surface types and to minimize impacts from seasonal events 

like dust coverage in summer. In a first step, adequate reference surface types are identified 

and adapted to historic imagery. Secondly, comparative mixture analyses are conducted on 

2011 mono and multi seasonal imagery and illustrate that mono seasonal unmixing produces 

high mathematic accuracy but lacks thematic consistency.  Results of historic multi seasonal 

mixture analyses are validated with third party studies on a city level and in-situ observations 

and interviews on a neighborhood level. Important tendencies in city development can be 

traced easily in the first case. The applied method outmatches a conventional classification 

approach in that region. On a neighborhood level (1km²), analyses of historic pixel fractions 

show some implausibility, but are generally in line with interview information. Future data 

availabilities might enhance this approach to be alternative to more complex data combining 

and processing methods. 
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1. Introduction

In 1970, life environments in most parts of the world had a far more rural character than they 

have today. Whilst Europe and the Americas had already an urban population exceeding 50% 

of total inhabitant numbers, urbanization processes started later in Asia and Africa. Within the 

last four decades, African urbanization rates rose from 24% to 40%, being expected to reach 

50% merely after 2013. Considering general population growth, the absolute number of urban 

population in Africa multiplied by five since the 1970s and is predicted to double again until 

2030, then counting 870 million people (UNDESA 2012). In this context, understanding 

urban processes of growth and sprawl is crucial for several reasons. Historic urban monitoring 

on either scale (e.g. economic, demographic, structural) might enhance competences on future 

urban policies. In addition, urban sprawl implies the replacement of rural land cover types and 

although a city is very restricted in its spatial extent, urbanization affects the environment and 

ecosystem services in a global, regional and local dimension (Foley et al. 2005, Kelder 2011). 

Since rapid urbanization, particularly in developing countries, is a rather young phenomenon, 

land cover and land use change sciences have the opportunity to monitor essential processes 

with remote sensing techniques, even if for remote sensing, urban environments stay one of 

the most challenging landscapes (Herold et al. 2004).  

Urban sprawl takes place for manifold internal and external reasons. Its occurrence is very 

individual, but generally depends on the question if it is planned or unplanned. Either way, the 

determination of urban areas is difficult because of their dynamics. Therefore, (Bhatta 2010) 

brings together various methods of urban space identification(Bhatta 2010). It can, amongst 

others, be based on spectral surface characteristics or on their combination with urban metrics 

(Herold et al. 2005). Due to its degree of detail, high resolution airborne and satellite imagery 

(e.g. QuickBird, RapidEye) is appropriate and widely used for urban environments (Tigges et 

al. 2013, Lu et al. 2010, Shan & Hussain 2010). Nonetheless, open data archives since 2008 

(USGS 2008) and approved preprocessing methods suggest the use of Landsat data from 

MSS, TM and ETM sensors. Landsat is a multispectral earth observation satellite, currently in 

its 8th generation. Multispectral Scanner (MSS), Thematic Mapper (TM) and Enhanced 

Thematic Mapper (ETM) are sensors characterizing Landsat generations 1 to 7 with a 

respective spatial resolution of 30m (USGS 2014). Studies show that medium spatial 

resolution data like Landsat can be reliably applicable in urban change mapping in 

combination with supplementary support data like Radar, census data or methods like object 
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oriented classification based on object structure and texture (Taubenboeck et al. 2012, 

Griffiths et al. 2012, van de Voorde et al. 2009, Shan & Hussain 2010). 

This study uses Landsat TM and ETM data to map historic urbanization processes in 

Ouagadougou, Burkina Faso. A preview of Landsat scenes set up in Africa: Atlas of Our 

Changing Environment (Fig. 1 (UNEP 2008)) and an ethnologic field research parallel to this 

study being able to provide in-situ observation data indicate research potential and 

opportunities of the study region. (de Jong et al. 2000) points out that medium resolution data 

alone using conventional classification methods do not produce sufficiently adequate results 

for Ouagadougou. Given the fact that historic supplementary data is rare for Ouagadougou, 

this study tries to compensate coarse spatial resolution with subpixel classifications using 

spectral mixture analyses (SMA), proven adequate and applied in urban environments in 

general (Small 2005, Michishita et al. 2012). SMA use equation systems to decompose a 

pixel’s spectrum into fractions of given reference spectra allowing statements on a subpixel 

level (Hostert 2001, Small 2004). At the same time, regional climatic conditions featuring dry 

and rain seasons encouraged me to consider multi seasonal datasets for comparative analyses, 

since they may allow surface type detection with regard to seasonal variations. Several studies 

prove the benefit of multi seasonal data in urban environments (Yuan et al. 2005) and remote 

sensing in general (Reese et al. 2002, Griffiths et al. 2010). 

The study’s main objective is to use a comparative approach of mono and multi seasonal 

SMA in order to deduce quantitative and qualitative information about urban structures. My 

first research question is if combined data from two points in time offer advantages over data 

from only one moment of the year concerning SMA results. The second research question is if 

multi seasonal SMA results on Landsat data from different years allow to quantitatively or 

qualitatively retrace gradual urbanization processes based on different pixel surface fractions. 

Fig. 1  NASA Landsat scenes of Ouagadougou, Burkina Faso, in 1986 and 2006.  
Left: Landsat 5TM, 18 Nov 1986. Right: Landsat 7ETM+, 16 October 2006. 
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2. Study Area

The study region consists of an area of approximately 40 km width and 35 km height 

comprising the greater Ouagadougou metropolitan region and adjacent landscapes (Fig. 2). 

Capital of the west-African republic Burkina Faso, Ouagadougou is the largest city in a 

country counting 14 million inhabitants (51 inh./km²) after the 2006 census (INSD 2006). 

2.1. Climate, water and vegetation 

Burkina Faso is for its most part located on a plateau elevated about 300m above sea level 

(Fearon & Laitin 2006). As a result of the rather flat topography, the country’s climate 

depends largely on geographic latitude and is affected by different climatic zones (Virmani et 

al. 1980, NCDC 2014). Despite of large regional variations in temperature and precipitation, 

Burkina Faso is in total characterized by tropical summer-humid climate under the influences 

of a trade wind driven dry season from October to April and an ITCZ driven wet season from 

May to September (Weischet & Endlicher 2012). Spectral surface features are, thus, supposed 

to differ considerably between the times of year. 

Fig. 2  Regional overview of the study site (shaded) including Landsat footprint (framed) 
Background illustration data: www.naturalearthdata.com 
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Burkina Faso features annual water balance deficits and its total yearly water resources are 

limited (UNEP 2008). Offering one of the highest dam densities in Africa, most of them have 

rather small capacities and agricultural irrigation does not take place on a large scale (UNEP 

2010, Sandwidi 2007). Phenology and, thereby, spectral features are in many areas 

exclusively rain dependent. 

Ouagadougou is located in the Dry Sudan Savanna (UNEP 2010), which is naturally 

dominated by true grasses, legumes and sedges, but highly affected by human agricultural 

activities (Madsen et al. 2004). Predominant crops are cereals, cotton, groundnuts and sesame, 

dependent on seasonal rainfall. Decentralized rural development policies led to fragmented 

agricultural areas with tree and shrub populations (Ouédraogo 2002, UNEP 2008).1 

2.2. Demography, land use and urban sprawl 

Counting about 1.475.000 inhabitants in 2006, Ouagadougou has multiplied its population 

within the last decades (465.000 in 1985, 750.000 in 1996). With a current growth rate of 4 to 

5% and prospective populations of 1.9 million in 2010 (no confirmed census) and 3.6 million 

in 2020 it has the potential for further future studies (Fournet et al. 2008, UNDESA 2012). 

Thus, Ouagadougou tends to even extend its hierarchical primacy in the country, which can 

be illustrated by several respective indices (Chatel et al. 2011). 

Still a rather rural township in the mid 20th century, urban growth and structural 

modernization induced the necessity of a first urban development plan in 1984 going along 

with a nationalization of all territories (Fournet et al. 2008, Prat 1996). Since then, the reasons 

of rapid urbanization are diverse, reaching from rural-urban migration due to droughts and 

famines, the escape from traditional rural lifestyles (de Jong et al. 2000), elevated natural 

growth rates (Fournet et al. 2008) and the occupation of land for speculative reasons 

(Ouédraogo 2002) to external factors as political instability in the neighboring Ivory Coast in 

the 2000s (Beauchemin 2011). Some aspects not only lead to a rising urban extent of 

Ouagadougou, but also to an unplanned, unorganized and widely illegal settlement in the 

outskirt areas (Fournet et al. 2008). 

1 For more information on historical and current cultural and legislative aspects of land use and rural 
development in Burkina Faso consult Ouédraogo 2002. 
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3. Data and Methods

3.1.Data and preprocessing

Central Burkina Faso lies within the WRS-2 (Landsat Worldwide Reference System) scene 

path 195/row 051 (Fig. 2). Monitoring urbanization processes over time, a discrete time series 

including five time steps from 1986 to 2011 serves as a basic dataset. Each time step features 

one image taken just after the rain season in fall and one taken during the dry season in early 

spring (Table 1). 

All ten images undergo automatic atmospheric correction using the Landsat Ecosystem 

Disturbance Adaptive Processing System (LEDAPS (Masek et al. 2006)) and are cloud 

masked by an object based Fmask algorithm (Zhu 2011). Water is masked using the Modified 

Normalized Difference Water Index (MDNWI) that generally offers a very high overall 

accuracy on inland waters (Xu 2006). Atmospheric correction adjusts spectral variation 

caused by atmospheric factors like aerosol concentration. Cloud and water masks are 

necessary to avoid unwanted statistical effects due to surfaces that this study doesn’t focus on. 

All images are reduced to relevant 

spatial and spectral subsets 

containing six optical bands from 

TM and ETM sensors. An image 

stack of both spring and fall images 

containing twelve bands is provided 

for following analyses. It will further 

be referenced as image stack, 

whereas single imagery will be 

referenced as spring imagery/fall 

imagery.  

Landsat generation 
and sensor 

Year Images (DOY / Date) 

5 TM 1986 021 / 21 jan  1987 
322 / 18 nov 1986 

7 ETM+ 2002 022 / 22 jan  2002 
246 / 03 sep  2002 

5 TM 2007 044 / 13 feb  2007 
268 / 25 sep  2007 

5 TM 2009 052 / 21 feb  2010 
273 / 30 sep  2009 

5 TM 2011 039 / 08 feb  2011 
247 / 04 sep  2011 

Table 1  Analysed Landsat imagery 
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3.2. Methods 

The first step of this study consists in the choice of 

an adequate endmember set for the youngest year 

of observation, 2011. An endmember is a 

reference surface type that serves as input data for 

spectral mixture analyses. Endmember choices are 

made by visual pre-selection of different surface 

types and following statistical evaluation. Spectral 

libraries are then adapted to respective historic 

imagery. In a second step, comparative iterative 

spectral mixture analyses (ISMA) are conducted 

on mono and multi seasonal imagery of 2011. 

This contributes to the first research question 

leading to the interpretation of possible 

advantages of multi seasonal data. Finally, an 

image stack of all historic multi seasonal ISMA 

procedures is used to visually and quantitatively 

elaborate potentials of the method on a city and 

neighborhood level (Fig. 3).  

3.2.1. Endmember selection 

My approach aims at spectral endmembers originating from processes on the earth’s surface 

to ensure the SMA and its results to be driven by physical and not by thematic classes. 

Thematic classes would imply a precedent interpretation of processes already. Urbanization is 

understood here as a continuous process implying that there is no establishment of any 

discrete urban classification. 

The selection of adequate endmember spectra that most likely represent pure physical 

surfaces of the imagery is important (Hostert 2001). However, the use of available database 

spectra seems too uncertain, because a same surface might differ largely depending on its 

location. In-situ measurements were not possible to do. Purely automated approaches (e.g. 

Pixel Purity Indices) turn out to identify rather extreme spectra (oversaturation, water, diff. 

tarmacs) at the expense of frequent surfaces. Finally, the study proceeds with a dual approach 

Fig. 3  Steps of analysis 
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recommended by (Tompkins et al. 1997) based on a manual endmember selection considering 

high resolution aerial imagery from Google Earth, fine-tuned by statistical error analyses. 

The endmember selection process is split into three steps: Initially, surface types applicable 

for the analyses are identified on a multi seasonal basis sampling multiple representative 

spectra per surface type. Secondly, test linear SMAs altering one of the input endmembers 

while keeping the others fixed are used to generate comparable error tables. This step is, 

however, done on mono seasonal data, because robust endmember spectra likewise fit to all 

three image types (spring, fall and stack). Spectra offering reasonable root mean square error 

(RMSE) values in five relevant regions of interest (ROI) are chosen as final endmember 

spectra. 

In general, every historic image has an individually adapted endmember library. However, the 

amount and character of endmembers is supposed to be universally valid and the reference 

pixels stay at the same location. A reference pixel is replaced in the respective library if it is 

not considered suitable in the historic image for the surface it represents. A reason could be 

that, for example, forested area in 2011 did not contain trees yet in 2002. In this case example, 

the 2002 reference pixel for forest surfaces would be adapted. 

3.2.2. Spectral mixture analysis 

In order to allow a comparative approach both spring and fall imagery as well as the stacked 

image are unmixed using an iterative spectral mixture analysis (ISMA (Rogge et al. 2006)) 

tool embedded in the enMAP Box (Rabe et al. 2014). Linear SMA divides a pixel’s spectrum 

in fractions of all given image-wide input endmember spectra using a linear equation system 

(Small 2004). If the system is overdetermined (more equations than variables, i.e. more bands 

than endmembers), it uses approximation methods to minimize the additional error term. 

However, traditional SMA does not account for class variability within heterogeneous 

environments meaning that linear SMA considers every image endmember to be present in 

every image pixel (Somers et al. 2011). ISMA is a quantitative method for pixel based 

variable endmember analysis. It processes multiple linear SMAs per pixel reducing iteratively 

the number of input endmembers. By means of the resulting RMS errors an appropriate 

quantity and combination of endmembers per pixel can be designated whereas threshold 

criteria are manually set by the user (Rogge et al. 2006, Mehl & Hill 2014). In this study, 

numerous results from different parameter sets are compared considering the amount of shade 
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fraction, a qualitative evaluation of the endmember choice and RMS-error statistics over 

selected ROIs. However, an automatic variable endmember choice led to important challenges 

like corrupt pixels where thresholds are never reached (up to 15% of all pixels per image). 

This effect multiplies to nearly 30% of all pixels that cannot be analyzed when stacking the 

images. Following SMAs are processed defining fixed amounts of endmembers (3-em and 4-

em models) still allowing the automatized identification of endmember combinations. 

At this point, the results of a multi temporal approach are expected to have important 

advantages for the study purpose for the following reasons: 

- Seasonal Vegetation, like most agriculture, only emerges in multi seasonal spectra,

since it is highly dependent on rainfall.

- Some surface types resemble in one season while they differ remarkably in the other

one. So do crops and forest spectrally resemble in fall, while they differ in the dry

season. Hence, a multi seasonal approach is assumed to be more robust.

- Since spectral mixture analyses are based on linear equation systems, mono seasonal

SMA on Landsat imagery is limited to a maximum of six endmembers due to band

limitations, whereas even less are recommended (Small 2004).

However, it is uncertain if the degree of overdetermination, which is significantly higher at 

multi seasonal mixture analysis, will finally have important impacts on error values and, thus, 

mathematical adequacy of used approximation algorithms. 

3.2.3. Evaluation methods 

The general potential of spectral mixture analyses on multi seasonal Landsat scenes over time 

is estimated on a city level, identifying trends and global patterns. It is qualitatively evaluated 

using multi seasonal spectral mixture results as well as (Prat 1996) and (Fournet et al. 2008). 

Both authors use the fact if a settlement is registered in cadastral surveys as a key 

categorization for urban mapping. (de Jong et al. 2000) relying on six socio-economic city 

sections predefined within a Ouagadougou city management program serve as evaluation 

data, too. 

A more detailed and quantitative analysis is conducted on seven neighborhoods selected in 

accordance with the above mentioned field study (Appendix 1). Observing surface fractions 

over time reveals neighborhood characteristics like gradual densification or sudden urban 
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development with temporal references allowing thematic interpretations. A neighborhood has 

a size of 1 km² and is supposed to have changed its urban character within the last 25 years. 

Results are finally illustrated using neighborhood mean spectra and showing each endmember 

fraction in each year of our analysis in one diagram that allows to trace a neighborhood’s 

potentially complex development. Validation and evaluation of neighborhood results is based 

on in-situ surveys. 

4. Results

4.1.Endmember selection

 The manual endmember 

selection on 2011 imagery offers 

a first set of nine surface types 

including shade. For several 

reasons, the eventually applied 

endmember set only contains six 

different surface types (Table 2). 

The lack of areas that purely 

represent typical roof surfaces as 

concrete or corrugated iron 

suggests a spectral endmember 

accumulating all roof surfaces 

except brick as a mixture. 

Indeed, plastic sheets and canvas 

serve as rooftops of some small 

businesses and markets. Though, 

plastic surfaces in our Landsat 

scenes suffer from 

oversaturation and are not of 

central importance for the 

study’s purposes. Tarmac as a typical urban land cover is not crucial for this study either. 

Roads will be overlaid by respective open street map information on final maps, since a 

tarmac endmember leads to severe and obvious misinterpretations. Error tables are used to 

EM-Set 1 EM-Set 2 Remark

Vegetation Vegetation Includes forests, aquatic 
vegetation and permanent 
cultivations 

Open Soil Open Soil Includes rural soils and urban
waste land 

Seasonal 
Vegetation 

Seasonal 
Vegetation 

Includes natural vegetation,
grassland and periodic 
cultivation 

Concrete  Includes concrete roofs and
open urban spaces 

Corrugated 
Iron 

 Includes iron roofs 

 Mixed Urban 
Roofs 

Includes corrugated iron, 
concrete and other rooftops. 
Mixture of soil and vegetative 
fractions cannot be denied.

Brick/Clay Brick/Clay Includes brick rooftops and clay 
pits

Plastic Roof  Includes canvas sheets and other
plastic materials

Tarmac  Includes roads and airports

Shadow/Dark 
Fraction 

Shadow/Dark 
Fraction 

Zero value 

Table 2 Set of initial and finally applied surface endmembers
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find final reference spectra per surface (Table 3). Fig.5 illustrates all reference spectra for 

2011 imagery. 

Table 3  Example: Statistical comparison of potential reference spectra for one endmember. 

Numbers imply maxima (above) and minima (below) RMSE values and their respective standard 

deviation out of ROIs. Seasonal vegetation has been a substitute for soil in the dry season and for 

vegetation in the rainy season. Values only have relative importance. Bold: Finally chosen references. 

Altering 
endmember 
spectrum 

Spectrum at 
location 

Dry Season imagery Rainy Season imagery 

RMSE mean Standard 
deviation 

RMSE mean Standard 
deviation 

Seasonal 
Vegetation 

4477/5663 76.8 
134.0 

38.3 
33.7 

80.0 
106.5 

23.2 
91.6 

3758/6278 60.0 
76.6 

25.7 
31.7 

65.8 
122.0 

43.0 
57.1 

3572/6327 47.1 
83.8 

18.1 
41.1 

56.4 
113.7 

54.0 
58.7 

3648/5673 78.1 
126.4 

37.4 
34.7 

70.1 
145.1 

57.6 
43.7 

4451/6062 62.6 
80.3 

26.7 
31.4 

49.8 
127.7 

23.9 
54.9 

Fig. 4  Final reference endmember set for 2011 imagery. 
Multi seasonal spectra consist of six bands that characterize the dry season and six bands that 
characterize the rain season 
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4.2. Spectral Mixture Analysis on mono and multi seasonal data 

Spectral mixture analyses on 2011 images suggest that some of the previous assumptions on 

mono and multi seasonal data are correct. Due to climatic and atmospheric circumstances, 

every SMA result allows different perspectives and interpretations of the scene. 

The SMA result of the dry season imagery is, as expected, largely dominated by soils (Fig. 5-

1-C). Urban quarters are traceable and distinguishable visually considering roof fractions

(Fig. 5-1-A & Fig. 5-1-B). Both 3-em and 4-em models suffer from negative surface fractions,

particularly in brick roofs (Fig. 5-1-D). RMSE values are 0.8/100 in average and have a

standard deviation of 0.4/100 (0.5/100 and 0.3/100 for the 4-em model) with lower values in

urban environments.

Rain season’s SMA result makes urban structures hard to detect. Roof fractions appear in 

areas that are obviously not urban in spite of very specific endmember spectra (> 50% 

fraction, Fig. 5-2-A). High inner-city vegetation fractions do not catch the character of a dry 

savanna city as it is on first sight (Fig. 5-2-B & Fig. 5-2-C). The 3-em model reveals 

nonetheless some plausible urban structures in recently built up areas (Fig. 5-2-C & Fig. 5-2-

D). Again, the 4-em model clearly suffers from large negative fractions, whereas the 3-em 

model does not. RMSE values are 0.8/100 in average and have a standard deviation of 0.3/100 

(0.7/100 and 0.4/100 for the 4-em model) with lower values in urban environments. 

On first sight, the unmixed stack image allows to trace urban environments in a 

comprehensive way in a 3-em and 4-em model. Roof fractions are larger in established 

quarters than in those known to be built up after 2003 (Fig. 5-3-A & Fig. 5-3-B). Rural 

environments are dominated by seasonal vegetation including scattered spots of soil and 

permanent vegetation (Fig. 5-3-C). Vegetation patterns are similar to those from the dry 

season image, but at a higher fraction level. However, obvious misinterpretations of brick 

roofs occur in the city’s surroundings on surfaces that are supposed to be of agricultural use 

(Fig. 5-3-D). The 4-em model differs by more frequent negative fractions and higher dark 

fractions in urban environments. Overall RMSE has an average of 1.0/100 and a standard 

deviation of 0.5/100 (1.0/100 and 0.4/100 for the 4-em model). The error image is regularly 

structured with slightly lower values in urban environments. 

It can be stated that the extent of overdetermination of the mixture analysis’ equation system 

does not have large impacts on the error term approximation result. 
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Fig. 5 Spectral mixture analysis results for dry season, rain season and multi seasonal data 

Images visualize 3- (above) and 4-endmember (center) SMA models for dry (1), rain (2) and multi season (3) imagery. 

Visualized endmembers for dry (1) and rain (2) season images are Vegetation (red), Soil (green) and Mixed Roof 
Surfaces (blue) scaled from 0 to 1. Visualized endmembers for stack imagery (3) are Vegetation (red), Seasonal 
Vegetation (green) and Roof surfaces (blue) scaled from 0 to 1. 

1-D and 3-D show fractions of Brick Roofs scaled from -1 to 0 (black = negative fractions)!

1 2 3
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4.3.City level analysis 

On a city level, the unmixed multi seasonal images of each time step allow to identify global 

patterns of development since 1986. Results are based on an integral observation of spectrally 

unmixed multi seasonal images (Fig. 6). 

In 1986, the city of Ouagadougou has a rather small dimension. Built up areas characterized 

by rooftop surfaces are concentrated around a city center comprising the districts of 

Paspanga, Koulouba and Zangouettin (Appendix 3c). The spectral mixture results reveal 

decreasing roof fractions towards the city’s periphery (Appendix 2a-1). Scattered rooftop 

fractions also appear in the city’s south western outskirts. The Ouagadougou green belt as 

well as a forest east of the inner-city dam are easily detectable through its large fractions of 

permanent vegetation (Appendix 2a-2). The rural areas are dominated by soils containing 

fractions of seasonal vegetation besides watercourses and lakes.  

From 1986 to 2002, Ouagadougou experiences urban growth towards all directions. 

Wogodogo-Nossin, not yet parceled out in 1983 (Appendix 3b), is now dense built up area. 

Large urban expansion can be observed between the basin and the green belt (Appendix 2b-1) 

as well as around the military base (Appendix 2b-2). New districts emerge in the south of the 

city and loose constructions with high soil fractions appear in the east (Appendix 2b-3 and 4). 

Considering the overall area, seasonal vegetation is dominant over soil and permanent 

vegetation. Soil surfaces stay frequent in the periphery.  

Fig. 6  Initial seasonal data (left) and multi seasonal SMA data for city level observations (right) 
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In 2007, fractions of roof and seasonal vegetation seem to become more dominant. First 

comprehensive constructions north of the green belt can be identified and the southern 

quarters of Pissy and Ouaga 2000 (Appendix 3c & Appendix 2c-1) finally seem to have 

established. In the eastern part of the agglomeration, roof fractions increased and replaced 

predominant open soils. Clusters of larger rooftop surfaces also show up in the very south of 

the study area. 

Those roof fractions disappear again in 2009 imagery, which again features rising soil 

fractions in the city. Besides very slight land cover changes, a neighborhood next to the 

airport disappeared (Appendix 2d-1).  

In 2011, that airport neighborhood is about to be reconstructed (Appendix 2e-1). Further 

expansions in the south and densifications in the north east are remarkable for this point in 

time. In general, soils and permanent vegetation on lakes are again more important in the 

city’s surroundings. 

4.4. Neighborhood level analysis 

Analysis of urbanization processes on the neighborhood level are presented for each 

neighborhood including a short description from in-situ observations, one representative 

photo, one selected fraction combination of historic multi seasonal SMA results and one 

diagram illustrating historic development of endmember fractions (Fig. 7). Fractions are 

based on neighborhood mean spectra.  

Fig. 7 Multi seasonal SMA data on a city level (left), 30 band stack of historic SMAs (right) 
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N1: Tanghin Karpala (Fig. 8) 

The Tanghin Karpala neighborhood is described as a residential area under construction. It is 

lotted but very loosely built up with many free spaces (including reserve zones for 

administrative infrastructure). The quarter seems to be young, since there is no supply of 

electricity or water. The vegetation is very sparse with scattered trees and shrubs. The historic 

endmember fractions show an increase in rooftops since 2007 up to 15-20%. Seasonal 

Vegetation and Soil are predominant altering in reverse proportion. Negative fractions occur 

in 2002. 

N2: Bendogo (Fig. 8) 

Bendogo is also a lotted residential area featuring more built up parcels than Tanghin 

Karpala. The neighborhood gives the impression to be established for a longer time. More 

rooftops consist in robust materials and are fixed. There is supply of electricity and water. 

Fig. 8 Results Tanghin Karpala (left), Bendogo (center), Karpala (right) 
Photo (above), Historic endmember fractions (below), RGB roof 2007/2009/2011 (left +right), RGB roof 1986/2002/2007 (center) 

Tanghin Karpala Bendogo Karpala
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Interviews indicate that the quarter has not changed significantly since 2009. Vegetation is 

sparse, too, but the overall impression is that there are less green spaces than in Tanghin due 

to less free spaces in general. Fraction history shows that Soils decreased significantly since 

1986. Rooftop covers about 40% of the area from 2002 to 2011, with a slight break in 2009. 

N3: Karpala (Fig. 8) 

Karpala (= new quarter in Mooré language) is a loosely built up residential area with many 

free spaces. Roads are of a bad quality and the neighborhood is characterized by urban corn 

fields. The quarter seems to be very young and because of a flood in 2009 many people are 

about to move away again. An important number of houses is abandoned. Agricultural use 

makes it a green neighborhood at the beginning of the rain season. Fractions show rising roof 

coverage since 2002, varying Seasonal Vegetation and no permanent vegetation underlining 

crops’ rain dependency. 

Fig. 9 Results Kouritenga (left), Hamadalaye (center), Tampouy (right) 
Photo (above), Historic endmember fractions (below), RGB roof 2007/2009/2011 

TampouyKouritenga Hamadalaye
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N4: Kouritenga (Fig. 9) 

Interviews reveal that Kouritenga has been lotted in 2009. 

Small huts are about to be replaced by larger buildings. 

The building density within the neighborhood varies. 

Construction materials and vegetation are similar to 

Bendogo. So is the historic fraction map. 

N5: Hamadalaye (Fig. 9) 

Hamadalaye is an established inner-city neighborhood 

lotted since 1985. There are no free lots. The quarter is 

well organized, provides electricity, water as well as 

house numbers. Some houses have more than one floor. 

Vegetation is rare, but if trees exists, they have obviously 

been planted regularly and a long time ago. Fraction 

history shows roof fractions increasing from 1986 to 

2011, then staying on a 60%-level with a break in 2009. 

N6: Tampouy (Fig. 9) 

Tampouy is an established neighborhood lotted since 1986 and located north of the western 

basin. There are no free lots, whereas half of a built up lot is estimated to be impervious. The 

neighborhood’s character seems similar to Hamadalaye. Rooftop coverage developed 

similarly, but on a lower level with respectively higher Seasonal Vegetation fractions. 

N7: Tampouy non loti (Fig. 10) 

This quarter is characterized by a nearby stone pit. Apparently, the neighborhood is currently 

about to be lotted, but huts are still constructed in an unorganized way, stand very close to 

each other and are partly uninhabited. Vegetation is very rare. Again, roof coverage rises 

since 2002 with a decreasing speed. Cumulated Seasonal Vegetation and Soil surfaces drop 

accordingly. 

Fig. 10 Results Tampouy non loti 
Photo (above), Historic endmember fractions (below), RGB 
roof 2007/2009/2011 

Tampouy n.l.
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5. Discussion

Ouagadougou obviously experienced severe changes in urban structure between 1986 and 

2011. Even in the 2000s urbanization processes can be recognized within periods of not 

longer than two years. This chapter will interpret and discuss the methods and results 

presented above. 

Mono and multi seasonal spectral mixture analysis 

Spectral mixture analysis results confirm the advantage of a multi seasonal unmixing 

approach. Although error values are very low in both processes, they only indicate a 

mathematic accuracy of how good the parameter set is for the respective image. Difficulties of 

mono seasonal approaches have, though, a thematic character. 

This thesis confirms that studies in the dry savanna zone should consider data from both dry 

and rain season. Multi seasonal data allow to take into account surfaces that are only 

identifiable when being observed over time. Mono seasonal approaches lead to 

misinterpretations due to negative fractions and lower endmember diversity. This might be 

caused by the fact that in a fixed endmember amount model, the method is forced to 

determine more variables than mathematically accurate for mono seasonal SMA equation 

systems for some pixels. In addition, mono seasonal data are very sensitive to natural 

circumstances like dusty rooftops and a surface’s moisture content. Improvements are in 

particular possible in the choice of reference endmembers. A more detailed distinction of 

urban surfaces would require in-situ measurements or multispectral high resolution imagery. 

Additional use of land cover maps would facilitate the process of validation and a variable 

amount of endmembers would probably enhance the quality of SMA results. As ISMA turns 

out to be not adequate for multispectral imagery (as it is also recommended for hyperspectral 

imagery), the use of a Multiple Endmember Spectral Mixture Analysis (MESMA) to Landsat 

scenes could be an alternative, as it worked fine in (Michishita et al. 2012). MESMA, 

however, does not support variable endmember combinations at all. 

City level analysis 

Cross-validation with (Prat 1996) and (Fournet et al. 2008) emphasizes that on a city level, 

spectral mixture analyses using multi seasonal Landsat data works fine to trace global trends 

of urbanization in Ouagadougou. 
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In 1986, the spatial extent of rooftop surface fractions more or less corresponds to the city 

extent Prat found out for the year 1987 (Appendix 3a). Parceled zones in Prat’s study tend to 

have higher roof fractions in the SMA image than non-parceled zones. However, Fournet’s 

map of urbanization in 1983 shows a slightly larger city extent (Appendix 3b). Those 

discrepancies might find their reason in the fact that both authors consider if an area is 

parceled, i.e. it does not necessarily have to be built up. Examples are the districts of Cissin 

and Patte d’Oie. The SMA image represents a result that seems adequate for describing the 

city’s extent at that time. Roof fractions in the south west of the study region could be 

interpreted as villages, even if large villages are improbable in the rural outskirts. Low 

fractions of seasonal vegetation might be due to the fact that the 1986 rain season image 

originates from November, whereas rain season images of other image pairs are taken in 

September. Important rain dependent vegetation might have disappeared already. 

Soil surfaces within the city in 2002 and their development to built up areas in 2007, 

especially in the eastern part of Ouagadougou, show that inner city soil surfaces might be an 

indicator for future construction works. Yet, it has to be considered that roof coverage in 

2007 is extremely dense compared to other images and it cannot be excluded that they are 

overestimated. Compared with Fournet’s map of parceled area in 2003, results of the 2002 

SMA again seem to be well interpretable (Appendix 3c, beige colored & Appendix 2b). 

Comparing 2011 SMA results with a prediction of city expansion from 2010 to 2015 by 

Fournet (Appendix 2e and Appendix 3d), it can be stated that some tendencies seem to be 

confirmed in this study’s SMA results, like further expansion west of the military camp. 

Others are not traceable yet, like expansions east of Ouaga 2000. 

The method of subpixel fraction analysis applied here outmatches de Jong’s results using 

conventional and contextual classification methods using SPOT-XS images (de Jong et al. 

2000). De Jong chose a maximum likelihood approach using discrete thematic classes and 

showed that new and old peripheral quarters, squatter settlements and industrial areas are 

very difficult to distinguish in his study (Appendix 4). Indeed, this study and (de Jong et al. 

2000) are not comparable in detail. However, there are important advantages of subpixel 

analysis on a city level. General tendencies of city expansion are easily traceable over time. 

In addition, fractions of different surface types, particularly rooftops, are an indicator for 

gradual and continuous processes without the necessity for discrete classes that require 

previous determination of thresholds. It also underlines that medium resolution imagery like 
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Landsat is generally applicable in urban environments without supplementary data. 

Quantitative validation of results might nonetheless turn out to be complicated, since it is 

easier proceeding previous discretization.  

Neighborhood level analysis 

The combination of historic urban monitoring using a spectral mixture analysis approach on 

Landsat data with in-situ interviews and observations already allows to draw precise and 

plausible conclusions referring to urban processes on a neighborhood level. 

Substantial statements can especially made about the temporal development of rooftop 

coverages within each neighborhood. The overall tendencies correspond widely to in-situ 

survey results. The fraction value is a plausible indicator for settlement density. Seasonal 

Vegetation and Soils are a sign for open spaces, even if climatic circumstances recommend to 

add up both classes in order to avoid misinterpretations due to varying precipitation. 

Vegetation fractions are authentic. Single particular events are explicable, e.g.: 

- The beginning of residential constructions often coincides in interviews and the SMA

images. So did housing in Tanghin Karpala begin “a few years ago” according to

interviews.  First rooftop fractions in that quarter emerge in 2009.

- Kouritenga has been parceled in 2009. At the same time, rooftop coverage decreases.

This might indicate the demolition of illegally built huts.

- Karpala suffered from floods in 2009 making a lot of people move away. Roof

coverage stagnates since then after experiencing a constant increase before.

- Settlements in most cases replace soils or season vegetation.

Nevertheless, some events leave questions unanswered: 

- In many neighborhoods, roof fractions drop in 2009. This is also the case in those

quarters, where no change occurred when relying on interviews (e.g. Hamadalaye).

- The endmember representing brick roofs seems to be less confidential, since

unexplainable peak values emerge in 2002. 2002 is also characterized by negative

fractions in some classes.

Those inconsistencies might have various reasons. A revision of the 2002 spectral library 

might already improve the results. It is in addition possible that automatic atmospheric 

correction led to irregular unmixing preconditions. 
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Method restrictions 

In spite of the overall promising results of the study, the applied methods still suffer some 

limitations. The evaluation of results on a city level is rather subjective due to a lack of 

historic documentation. It is moreover not certain if the quality of neighborhood results is 

reproducible in other city areas featuring different earth and urban processes. The evaluation 

is based on in-situ interviews that contain inconclusive statements and inconsistent thematic 

focus. Furthermore, the study accepts the impurity of some spectral references. The example 

of Hamadalaye, a district with regular tree appearance but no vegetative fractions after the 

unmixing process, underlines that the mixed rooftop endmember already contains vegetation. 

6. Conclusion

In a first step, this study states that in the observed study region of the African dry savanna, 

multi seasonal data is advantageous for thematic interpretations due to the region’s climatic 

features. It is, thus, in line with (Reese et al. 2002) and (Griffiths et al. 2010) who, indeed, 

applied the principle of multi seasonal data in a slightly different approach. The comparison 

with approaches using single point of time imagery in the same region of interest (de Jong et 

al. 2000) underlines the potential of multi seasonal data sets. Future analyses might be 

enhanced due to more regular data availability allowing to select and combine multi seasonal 

images on a more criteria oriented basis.  

Results on a city level allow a fairly adequate overall trend detection of urban development. 

This work places itself between mapping approaches using cadastral or survey information 

and individual digitalization (Fournet et al. 2008, Prat 1996, Chatel et al. 2011) and those 

using combined or enhanced data sets to monitor urban expansion globally and locally in high 

resolution (Lu et al. 2010, Taubenboeck et al. 2012, Marconcini et al. 2013). It adds a dense 

historic component to the former and can reveal disparities between city cadasters and actual 

extents of a settlement. The latter are numerous and well validated which makes this study a 

less complicated approach in case of some central enhancements. 

Apart from resolution issues, remote sensing methods suffer from severe limitations in urban 

areas in general, because they can not measure essential factors to draw conclusions on 

neither real urban features nor processes considering population, culture, policy or economy 

(Miller & Small 2003). (Michishita et al. 2012) proved that enhancements in the set-up of 

spectral libraries and validation methods can make spectral mixture analysis a reliable 
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alternative in urban areas. That study also managed to correlate fractions of built-up areas to 

some of the above named factors, knowing that it used a slightly different approach 

(MESMA) within a different study area. 

Following steps could also include a concept of change map. (Griffiths et al. 2010) and 

(Schneider 2012) established discrete change maps presuming thresholds, whereas 

(Michishita et al. 2012) developed gradual change maps. In the study region, it might 

complement a project by (Kelder et al. 2013) observing vegetation trends based on iNDVI 

values at selected spots in Ouagadougou using MODIS data for a 2002 to 2009 period. 

On a neighborhood level, SMA results correspond well with in-situ observations. However, a 

quantitative evaluation and validation is difficult, since reference fraction data is not 

available. A following study could adopt the approach from (Michishita et al. 2012) only 

considering the dominant fraction endmember for validation or using high resolution imagery 

for validation of the youngest imagery. 

Future potential of the methods presented in this study is based on future data availabilities. 

Since they are highly dependent on adequate data selection, the emergence of Landsat 8 and 

Sentinel II data might allow to compare corresponding points in time and phenology more 

reliably. In addition, higher spatial resolution provided by Sentinel II could make unmixing 

approaches more performant and complex data combination techniques redundant (ESA 

2013).  
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Appendix 

Appendix 1: Neighborhoods for neighborhood analysis 
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Appendix 2a:  Spectral mixture analysis result for image stack 1986 
  RGB = Vegetation, Seasonal Vegetation, Mixed Rooftop 
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Appendix 2b:  Spectral mixture analysis result for image stack 2002 
  RGB = Vegetation, Seasonal Vegetation, Mixed Rooftop 
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Appendix 2c:  Spectral mixture analysis result for image stack 2007 
  RGB = Vegetation, Seasonal Vegetation, Mixed Rooftop 
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Appendix 2d:  Spectral mixture analysis result for image stack 2009 
  RGB = Vegetation, Seasonal Vegetation, Mixed Rooftop 
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Appendix 2e: Spectral mixture analysis result for image stack 2011 
  RGB = Vegetation, Seasonal Vegetation, Mixed Rooftop 
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Appendix 3a: City extent Ouagadougou 1975 - 1993 (Prat 1996) 
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Appendix 3b: City extent Ouagadougou in 1983 (Fournet et al. 2008) 
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Appendix 3c: City extent Ouagadougou in 2003 (Fournet et al. 2008)   
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Appendix 3d: Estimated city extent Ouagadougou 2010 – 2015 (Fournet et al. 2008)   
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Appendix 4: Classification (Maximum likelihood + SPARK (contextual enhancement) on 
SPOT data for Ouagadougou in 1997 (de Jong et al. 2000)  
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