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Abstract 

 

Tropical deforestation and the continuing destruction of wildlife habitat are currently one of 

the major ecological challenges. Precise analyses and understanding of causes and drivers of 

deforestation are often limited as they can be highly complex. Border areas allow direct 

comparison of different deforestation dynamics and processes which can then be linked to 

underlying drivers and causes. 

This study analyzes deforestation rates, spatial patterns of deforestation and landscape 

fragmentation along the Colombian-Ecuadorian border in the tropical Amazon using Landsat 

satellite data from 1986, 1999 and 2013. Cloud free data for each year was obtained by 

image compositing. Change detection classification was carried out with the aim to map 

stable forest and non-forest as well as deforested areas between 1986-1999 and 1999-2013. 

Apart from visual interpretation of deforestation patterns in both countries, classification 

maps were used to calculate landscape metrics for analyzing forest fragmentation.  

Classification results yielded high accuracy with an overall accuracy of 93.48% for Colombia 

and 93.97% for Ecuador. Although deforestation rates in Colombia were higher during the 

first time period, second time period showed higher rates for Ecuador. Armed conflict and 

coca cultivation have an impact on deforestation rates in Colombia, while deforestation in 

Ecuador can be traced back to state-led migration process in the study area. Besides, forest in 

Colombia appears more fragmented than in Ecuador. In both countries, forest fragmentation 

increased over the time. Deforestation patterns were defined as diffuse for Colombia and 

fishbone for Ecuador. 

The analysis of dense time series can be used to enhance understanding of relationship 

between deforestation rates and socioeconomic processes between countries. 

 

 

 

 

 

 

 

 



III 
 

Resumen 

 

La deforestación tropical y la destrucción progresiva del habitat de la fauna silvestre es 

actualmente uno de los mayores desafíos ecológicos. El análisis detallado y el entendimento 

de las causas y los orígenes de deforestación suele está limitado por la alta complejidad de 

los mismos. Las regiones entre fronteras ofrecen una comparación directa de diferentes 

dinámicas y procesos de deforestación que pueden ser asociados después a sus causas y 

orígenes fundamentales. 

Este estudio analiza las tasas de deforestación, los patrones espaciales de deforestación y la 

fragmentación del paisaje en la frontera de Colombia con Ecuador en la Amazonia tropical, 

utilizando datos de imágenes satelitales Landsat de los años 1986, 1999 y 2013. Los datos 

libres de nubes son conseguidos a través de composiciones de  imágenes. Se realizó una 

clasificación de detección de cambios con el fin de mapear el bosque primario permanente y 

el no bosque, como también áreas deforestadas entre 1986-1999 y 1999-2013. Además de 

lainterpretación visual de patrones de deforestación en ambos países, los mapas clasificados 

se utilizaron para calcular métricas del paisaje para analizar la fragmentación del bosque.  

La clasificación presenta alta precisión con una exactitud general de 93.48% para Colombia y 

93.97% para Ecuador. Las tasas de deforestación fueron mas altas en Colombia durante el 

primer periodo de estudio, mientras que las tasas en el segundo periodo fueron más altas en 

Ecuador. Las tasas de deforestación en Colombia se pueden atribuir al conflicto armado y a 

los cultivos de coca y en Ecuador a un proceso de migración en el área del estudio motivado 

por el gobierno. Según los resultados de las métricas de pasiaje, el bosque en Colombia 

aparece más fragmentado que en Ecuador. La fragmentación del bosque se aumenta durante 

el tiempo en ambos países. Los patrones de deforestación son descritos como difusos para 

Colombia y fishbone para Ecuador.  

El análisis de series cronológicas más densas pueden servir para aumentar el entendimiento 

sobre las relaciones entre la intensidad de deforestación y los procesos socioeconómicos 

entre ambos países.   
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1. Introduction 

 
Deforestation and thus the change in terrestrial ecosystems is one of the many aspects that 

Steffen et al. (2011) point out as outcomes of the anthropocene. It is a topic of high 

relevance, since it directly affects two of the three most emerging planetary boundaries: 

biodiversity loss and climate change (Rockstrom 2009).  

On a global scale, deforestation takes place in every biome and ecosystem. Regarding 

absolute numbers, the tropical forests are most affected by deforestation from 2000 onwards 

(Hansen et al. 2013). A third of all deforestation worldwide occurs in the tropics and half of 

this amount precisely to South American tropical forest (Hansen et al. 2013). 

South America represents the largest tropical forest worldwide together also with the highest 

biodiversity rates and important aboveground carbon stocks (Aide et al. 2013, Lapola et al. 

2014). The moist and tropical Amazon rainforest still shows the highest amounts of forest 

loss during the last years (Aide et al. 2013) 

Most of the deforestation in South America occurred in Brazil, Paraguay and Argentina (Aide 

et al. 2013; Hansen et al. 2013). Nevertheless, loss of native forests also occurs in other 

countries sharing the Amazon basin, like Colombia and Ecuador (Perz et al. 2005). Together 

with Peru, these countries share most of the Napo rainforest in the Western Amazon. As a 

former biogeographical refugium, the Napo rainforest is among the Amazonian areas with 

highest biodiversity (Haffer 1969, Myers et al. 2000, Sierra 2000) and is also listed as one of 

the deforestation hotspots in the tropics (Achard 2002). Therefore, the Napo rainforest is an 

important subject to further analysis of deforestation. 

 

Geist & Lambin (2001) study drivers of tropical deforestation. They claim that dividing drivers 

into social and natural spheres is often difficult. As natural factors tend to be similar in 

borderlands and can therefore be excluded from the analysis, the geographical focus of this 

study will be on the Colombian-Ecuadorian borderlands, especially the western parts of the 

department Putumayo in Colombia and the province Sucumbíos in Ecuador. Differences in 

deforestation rates and patterns can thus be attributed to underlying socioeconomic factors 

(e.g. policy decisions or migration). Examining the last decades, socioeconomic processes in 

Putumayo and Sucumbíos have been very different, with Putumayo being the epicenter of 

coca cultivation in Colombia and thus highly involved in the Colombian civil war, which 

proved to be have triggering effect on deforestation (Etter et al. 2006). On the other side, 
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Sucumbíos represents one of the most popular destinations for inner rural migration in 

Ecuador with a colonization process guided by the government. 

Remote sensing has been a useful instrument to study and quantify deforestation in the 

Amazon rain forest (Myers 1988, Skole & Tucker 1993). The Landsat mission provides 

multispectral data with a spatial resolution of 30m from 1982 onwards (USGS 2013). It is 

therefore an attractive data source for analyzing deforestation processes in spatial detail 

(Griffiths et al. 2014, Hansen et al. 2013). The Colombian-Ecuadorian border has already 

been studied on basis of Landsat data by Sierra (2000) and Viña et al. (2004). Yet, both 

studies analyze deforestation processes only until 1996, leaving a gap for studies analyzing 

deforestation trends until the present. Furthermore, mentioned studies have not made use 

of the opening of the Landsat archive in 2008. Open data access allows to encounter the 

challenge of cloud covered images using pixel compositing. This method dynamically replaces 

cloudy pixels of a scene using temporally adjacent scenes in order to produce a composed 

cloud free image (Griffiths et al. 2013). Since cloud cover is one of the major challenges for 

remote sensing studies in general and specifically in the Amazon (Asner 2001), compositing 

offers the opportunity to enhance data quality for this study.  

Based on the composites, a change detection classification will be performed to identify 

deforested areas over time and analyze deforestation rates in Colombia and Ecuador. It was 

decided to analyze three different target years, stretching from first available Landsat 5 TM 

data to the present, representing two equivalent time periods to be studied. In comparison 

to their adjacent years, the years 1986, 1999 and 2013 show best availability of Landsat data 

for image compositing. 

Apart from quantifying the temporal dynamics of deforestation over time, the spatial pattern 

of deforestation and forest fragmentation is also related to socioeconomic drivers (Geist & 

Lambin 2001). A variety of landscape metrics have been developed in the last decades to 

study and quantify landscape fragmentation. Most of the metrics have their origin in 

conservation science or landscape ecology (Uumeaa et al. 2009). The software FRAGSTATS 

(McGarigal 2015) contains a multitude of different landscape metrics. It already has been 

applied successfully to study and compare deforestation patterns in the Amazon (Batistella et 

al. 2000, Viña & Estevez 2013). 
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Therefore, the research questions of this study are: 

- How do deforestation rates differ from another from 1986-1999 and 1999-2013 in 

Colombia and Ecuador? 

- How do deforestation patterns and forest fragmentation in Colombia and Ecuador 

evolve over time? 

 

 

2. Study area 

 

2.1. Size and range 

The study area is located between 0°35'57" 

degrees north (73 km north of the equator) 

and 0°03'27" degrees south (7 km south of 

the equator). It stretches from 77°17'28" to 

76°12'57" west. The spatial dimensions are 

80 km in direction north south and 120 km 

in direction east west. Colombian territory 

covers 49.4% (4762 km²) of the study area, 

whereas Ecuador covers 50.6% (4877 km²). 

This way, both countries are almost equally 

represented in spatial terms in this study.  

The Colombian study site is mostly covered 

by the department Putumayo and its 

municipios San Miguel, Valle de Guamuez, 

Puerto Asís and Orito. Small parts in the 

west of the study area belong to the 

neighboring department Nariño. On the Ecuadorian side, the study area is entirely covered 

by the province of Sucumbíos and its cantones Lago Agrio and Cascales. The most important 

urban environments within the study area are Lago Agrio in Ecuador (55,000 inhabitants) and 

Puerto Asís in Colombia (30,000 inhabitants). Another larger settlement is La Hormiga in 

Colombia with 15,000 inhabitants (DANE 2010, INEC 2010). 

 

Figure 1: Overview map with study area 
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2.2. Geomorphological and hydrological aspects 

The study area is located in a landscape called piedemonte. It is characterized by its position 

between the Andes in the west and the vast flatlands of the tropical Amazon rainforest in the 

east. Most rivers flow down the Andes eastwards, carrying large quantities of sediment 

which accumulates in the piedemonte, where slope gradually declines. The landscape is 

coined by hilly structures and underlies strong fluvial influences, leaving terraces behind 

(Brücher 1970). The soils in the study area are barely suitable for farming. Fertile land can be 

found close to rivers, which are periodically flooded and so supplied with necessary nutrients 

for farming (Robertson & Castiblanco 2012). Riverbeds are inconsistent, as streams can easily 

change their direction of flow, depending on precipitation intensity (Brücher 1970). Elevation 

in the study area ranges from 2350 meters in the northwest (foothills of the Andes) to 250 

meters in the eastern parts towards the Amazonian flatlands. Interviews have revealed that 

elevations higher than 800 meters are not considered as piedemonte by the local population 

(Hoffmann 2016). Most of the study area shows elevations between 250 and 350 meters. 

Areas with steep slope are located towards the west of the study area. 

 

2.3. Climate 

The climate in the study area is characteristic for tropical rainforest climate, with minor 

oscillation of monthly mean temperatures (around 1 – 3°C). The mean annual temperature of 

Puerto Asís, located on the Colombian side of the study area, is 24.8°C. Precipitation in this 

area varies between 2500 and 4000 mm annual rainfall, with increasing amount towards the 

cordilleras in the west, where topographic rain due to the westerlies occur. In the flatlands, 

convectional precipitation prevails (Brücher 1970).  

The Colombian meteorological institute (IDEAM) provides detailed data for Mocoa, capital of 

the department Putumayo and located north of the study area. Here, rainfall occurs over 20 

days per each month, indicating that explicit discrimination between dry and wet seasons 

cannot be made as, for instance, in the eastern Brazilian Amazon. Nevertheless, heaviest 

rainfalls occur from April to June. Average sunshine hours per day range between 2 hours in 

June to 4 hours in October, reflecting the high average cloud cover at the Andean foothills 

(IDEAM 2016). 
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2.4. Colonization processes and governance 

2.4.1. Ecuador 
 

The province of Sucumbíos was almost untouched by colonization before the late 1960's. In 

1967, oil was discovered in the region by the US Company Texaco Chevron (Kimmerling 

2006). The Ecuadorian government gave permission for oil extraction to these foreign 

companies, but they were responsible for the infrastructure development (Viña et al. 2004). 

On top of that, the government obliged Texaco also to build additional infrastructure of civil 

use, such as paved roads and bridges (Wasserstrom 2013). In this way, a basis was given for 

the colonization process. Sucumbíos offered vast land for landless farmers from the 

highlands as well as employment around the oil extraction sector (Wasserstrom 2013). The 

province became the hotspot destination for inner Ecuadorian migration, with peaks around 

1980 (Pichón 1997). Nevertheless, census data reveals, that Sucumbíos still remained the 

province with the fastest growing population between 1990 and 2001 (INEC 2016). The 

colonization process was officially declared as finished by the government in 1994 

(Wasserstrom2013). As a consequence of a severe economic crisis in 2000, inner migration 

declined and people sought better economic conditions in foreign countries, which led to 

declining population growth rates (INEC 2016, Jokisch & Pribilsky 2002).  

Colonized land is coined by smallholding farms. Most of the parcels are low-cleared areas 

with forest covering over 50% of the parcel. Common crops are coffee and cocoa, while cattle 

ranching is only playing a minor role. Commercial logging, cattle ranching and large scale 

commercial plantations are barely existent in the study area (Pichón et al. 2001). All in all, 

colonization in Sucumbíos was intended by the Ecuadorian government and land allocation 

mostly happened legally. 

 

2.4.2. Colombia 

 
The colonization of Putumayo started earlier than in Sucumbíos with the extraction of quina 

(cinchona officinalis) and rubber trees (hevea brasiliensis) at the beginning of the 20th 

century (Brücher 1970, Ramírez 2006). Settling in the study area was also facilitated by the 

construction of a road to Puerto Asís in 1912 (CNMH 2015). Consequently, migration to 
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Putumayo continued, as population from the highlands fled from political violence or was 

displaced from its former lands (Ramírez 2006), which led to agricultural expansion and 

commercial logging (CNMH 2015). 

Similar to Ecuador, oil extraction influenced economic progress in Putumayo. First 

perforations were made in 1963 (CNMH 2015). Equally, operating oil company Texaco was 

obliged to build the necessary infrastructure for oil extraction, but no additional 

infrastructure for civil use like in Sucumbíos (Viña et al. 2004). 

In the end of the 1970's, the big operating drug cartels from Cali and Medellín introduced the 

cultivation of coca in Putumayo. A report of the Centro Nacional de Memoria Histórica 

(CNMH) states that: 

With its vast forests, with an open agrarian frontier and recent unstable human 

settlements, Putumayo was practically terrain with inexistent presence of police and 

justice, which in combination with its geographic location and proximity to Peru made 

it favorable for the deceptive business practice of the cartels. 

     (CNMH 2015, p. 181, translated by author)  

During the Colombian civil war in 1984, the guerilla movement Fuerzas Armadas 

Revolucionarias de Colombia (FARC) expanded their territory to Putumayo and obliged 

cartels to submit to them. Coca cultivation still remained a very important aspect, as the 

FARC and also paramilitary forces depended highly economical on it (Trujillo & Badel 1998). 

This led to a remarkable increase in coca cultivation in 1990's which finally peaked in 2000, 

while coca production in Peru and Bolivia decreased (Díaz & Sánchez 2004). Farmers mostly 

had a positive attitude towards the cultivation of coca as it was economically more attractive 

than other crops and had direct benefits for them (Ramírez 2001). The Colombian 

Government tried to combat extensive coca crops by aerial fumigations in southern 

Putumayo, leading to severe defoliation of the local vegetation in 2001 (Messina & 

Delameter 2006). In the following years, coca cultivation diminished in Putumayo and 

remained low from thereon. However, in the recent years cultivation has increased slightly 

again, although the civil war is about to come to an end. Still, the safety situation in 

Putumayo remains tense (FIP 2014). 

Summarizing, the colonization process in Putumayo took place over a broader period and is 

marked by different historical and socioeconomic aspects. Nevertheless, one can conclude 
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that migration, colonization and thus agricultural expansion occurred without governmental 

intention. Especially before 2000, the influence of Colombian governance and policies in 

southern Putumayo has been practically inexistent as a result of the armed conflict. 

Consequently, land allocation took place often illegally (CNMH 2015), making agricultural 

expansion and deforestation uncontrollable for the authorities. 

 

 

3. Data and Methods 

 

3.1. Data 

The selected study area along the Colombian Ecuadorian border is covered by the WRS-2 

(Landsat Worldwide Reference System) footprint path 010/ row 63 (see figure 1). For image 

compositing, several images around a target date or year are necessary in order to obtain 

cloud free composites (Griffiths et al.2013). The selection of the target years 1986, 1999 and 

2013 is based on covering a broad temporal range, being almost equally temporarily 

distributed, coinciding with relevant historical aspects and data availability.   

The amount of acquired images per target year varies depending on data availability and 

quality of available data. Imagery with low quality due to haze for example is avoided since it 

may influence compositing negatively. The manually selected scenes used in this study are 

listed in table 1, resulting in five images for target year 1986, thirteen for 1999 and eight for 

2013. Images are downloaded as Level 1T products and Surface reflectance products. 

Apart from satellite images, an elevation model from the Shuttle Radar Topography Mission 

(SRTM) is also acquired for masking of mountains. 
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Table 1: Acquired Landsat data for the study listed by target years 

 

 

 

3.2. Preprocessing and compositing  

The United States Geological Survey (USGS) provides differently preprocessed Landsat 

products. Level 1T and Surface reflectance products are delivered already with a radiometric 

and geometric correction (USGS 2016). For Surface reflectance products, atmospheric 

correction is also provided in the product. Atmospheric correction is carried out for Landsat 5 

TM and Landsat 7 ETM+ images with the Landsat Ecosystem Disturbance Adaptive Processing 

System (LEDAPS) (Masek et al. 2006). Landsat 8 OLI imagery is corrected by Landsat Surface 

Reflectance Code (LaSRC) (Vermote et al. 2016). All acquired Landsat Surface reflectance 

scenes are stacked and reduced to the relevant six bands of surface reflectance including 

three visible bands (blue, green and red), one near infrared band and two short waved 

infrared (SWIR) bands.  

The removal of non-terrestrial features like clouds and their shadows is often preferable, as 

they are not relevant to the research subject and falsify image statistics and classification by 

Target Year 1986 Target Year 1999 Target Year 2013 

Landsat 
generation 
and sensor 

Year DOY 
Cloud 
cover 

(%) 

Landsat 
generation 
and sensor 

Year DOY 
Cloud 
cover 

(%) 

Landsat 
generation 
and sensor 

Year DOY 
Cloud 
cover 

(%) 

5 TM 1985 24 40.95 5 TM 1998 268 59.71 7 ETM + 2013 157 59.05 

5 TM 1986 91 12.24 5 TM 1998 364 32.74 8 OLI 2013 245 80.01 

5 TM 1986 235 74.98 5 TM 1999 175 60.71 7 ETM + 2013 301 50.13 

5 TM 1986 283 38.3 5 TM 1999 191 75.9 8 OLI 2013 309 33.53 

5 TM 1987 286 70.79 7 ETM + 1999 231 27.6 8 OLI 2013 357 62.9 

    5 TM 1999 239 19.76 8 OLI 2014 24 42.75 

    5 TM 1999 255 12.96 7 ETM + 2014 48 28.79 

    5 TM 1999 319 75.65 8 OLI 2014 104 24.08 

    7 ETM + 2000 26 22.34 

 

    7 ETM + 2000 74 29.52 

    5 TM 2000 226 35.86 

    7 ETM + 2000 298 51.18 

    7 ETM + 2000 314 72.66 
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extreme high or low reflectance values.  The Fmask algorithm by Zhu & Woodcock (2011) is 

able to detect cloud, cloud shadow, ice/snow and water in an image. The algorithm requires 

top of atmosphere data, therefore the Level 1T product scenes are used as input. It is then 

applied to all acquired images, using a ten percent threshold for cloud probability. That 

means that all pixels which have a greater than ten percent probability to represent clouds, 

cloud shadows, ice/snow or water are assigned to the corresponding Fmask class. Pixels 

which are not labeled as clear are masked out from each stacked Surface reflectance image. 

Apart from cloud masking, Fmask is used to derive a water mask that includes all pixels that 

at least once are labeled as water by the algorithm. By applying the water mask, riverbed 

changing streams can be excluded from the classification process as they are not relevant for 

the research question. Additionally, the SRTM elevation model is applied for masking out 

elevations higher than 800 meter, which do not account for the relevant piedemonte study 

area.  

 

Afterwards, masked images undergo a Tasseled Cap transformation (TC), introduced by Crist 

& Kauth (1986). TC is a linear band transformation which helps to emphasize relevant 

physical characteristics of the images. It is based on principal components analysis (PCA), 

which is known for the reduction of noise caused by statistical artifacts or haze (Albertz 2009, 

Campbell & Wynne 2011). Although applying cloud masking, haze is often not recognized 

and can therefore lead to confusion in image processing. TC has been successfully used for 

mapping deforestation in the Amazon (Müller et al. 2016). Therefore, TC is chosen to be the 

basis for the following classification. 

The transformation requires input vectors that are applied to multispectral datasets. Those 

are defined for Landsat 5 TM data by Crist & Kauth (1986). For Landsat 7 ETM + 8 OLI 

sensors, the modified vector is provided by Huang et al. (2002). Output of the TC 

transformation are three orthogonal indices; TC Brightness (relates to soil), TC Greenness 

(relates to photosynthetic vegetation) and TC Wetness (relates to canopy and moisture) 

(Lillesand et al. 2015).  
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To obtain cloud free imagery in regions with high cloud cover, image compositing has proven 

to be a suitable solution to that problem (Griffiths et al. 2013). Cloud free pixels from several 

images of a target year are merged together to a single image. The pixel value in this 

composite image depends on the function implemented by the user. To avoid influence of 

outliers (e.g. undetected clouds or cloud shadows), the median is chosen as an adequate 

function for the compositing process (Flood 2013). As the input data are TC indices, median 

composites are created for each index and then stacked together, resulting in the TC median 

composite for a target year. A graphical example for the compositing process is given in 

figure 2.  

 

Repeating the compositing process for each target year, the final image stack contains nine 

layers (three TC indices from three target years). A post classification change detection with 

several classification images provokes error propagation (Burnicki et al. 2007, Coppin et al. 

2004). An integrated change detection based on a single multi-temporal image stack is more 

appealing as error propagation can be avoided and therefore chosen for this study. 

 

 

3.3. Classification 

The supervised classification is carried out using the machine learning algorithm random 

forest by Breiman (1999). The classifier draws several random samples from input data. 

Based on those, a classification tree is created for each sample, generating a random decision 

tree forest. Pixels are classified then by all decision trees and assigned to the class with the 

major vote of all trees. Random forest has been widely used in remote sensing and change 

detection and proves to yield robust results (Pal 2005). The classifier is embedded in the 

Image RF tool of the EnMap-Box software (van der Linden et al. 2015), which is used in this 

Figure 2: Compositing example for target year 1986 
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study. 

For the integrated change detection, four classes are defined to be classified. 

PF  Stable primary forest 

DF 1999  Primary forest deforested by 1999 

DF 2013  Primary forest deforested by 2013 

NF   Non primary forest  

A preliminary classification of the image stack with the four classes is done by the author’s 

visual interpretation, sampling training data manually for each class. Labeling of pixels is 

based mainly on visual interpretation of Landsat imagery as well as high resolution imagery 

from Google EarthTM in some cases. In order to support a non-biased selection of training 

pixels for the random forest classification, a random equalized stratified sample is drawn 

from the preliminary classification map with 100 pixels per class. This way, training pixels are 

randomly distributed in space. The drawn pixels are verified and in case of mislabeling by the 

preliminary classification relabeled to the correct class. If then a class has less than 100 

pixels, additional pixels are added manually to ensure that each class is trained with at least 

100 pixels. For the NF class, further pixels are added for surfaces with low probability of 

random occurrence (e.g. concrete in cities, roads or sandbanks). Table 2 shows the total 

amount of training pixels per class. 

 

Subsequently, the randomly sampled training pixels for the four classes are used as input for 

model training. The TC median composite stack is used as image input to create the random 

forest model on. Parametrizations of random forest are left on default settings with 100 

trees. The model is then applied again to the image stack to obtain the classification.    

 

3.3.1. Postprocessing 
To avoid misclassified isolated pixels in the final classification, it is common to smoothen the 

resulting raster after the classification (Caras & Karnieli 2015). In this case, a moving window 

with a majority filter is applied. The moving window has a size of 3 by 3 pixels. The center 

pixel is assigned to the class with the majority pixel count in the moving window (Lillesand et 

al. 2015). 
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3.4. Validation 

The resulting classification map is validated making use of a stratified random sampling 

design. Cochran (1977) developed an equation for calculating the minimum necessary total 

amount of validation pixels in order to achieve sound accuracy values. One possibility is to 

apportion the total amount among the classes by their mapped area proportion. However, 

this can lead to extreme low values in spatially underrepresented classes (e.g. change 

classes). Moreover, Olofsson et al. (2014) recommend that pixel allocation should be at least 

50 pixels per class. On the other hand, a disproportional allocation of validation pixels leads 

to a bias, which can be leveled out by an area adjustment calculation, resulting in a single 

area estimation for the entire study area (Olofsson et al. 2013). For comparison purposes, 

validation and accuracy assessment is carried out for each country independently. 

Table 2: Allocation of training and validation pixels per class 
 

Class Training pixels Validation (Colombia) Validation (Ecuador) 

PF 106 114 194 

DF 1999 100 64 60 

DF 2013 100 60 60 

NF 150 127 60 

Total 456 365 375 

 
 
 For both countries, the adequate total number of validation pixels is calculated with the 

equation of Cochran (1977). The standard error is specified as 0.015. The desired user's 

accuracies are specified as 0.95 for the stable forest class (PF), 0.90 for the stable non forest 

class (NF) and 0.85 for the change classes (DF 1999 and DF 2013). Olofsson et al. (2014) 

suggest a minimum of 50 validation pixels per class. For this study, a minimum of 60 pixels 

per class was determined. Therefore, some change classes are oversampled while other 

classes contain an area proportioned number of pixels. The exact allocation of validation 

pixels for both countries is shown in table 2. Pixels are validated by visual interpretation of 

Landsat imagery and high resolution data from Google EarthTM, dating back until 2002. 
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3.5. Pattern and fragmentation analysis 

FRAGSTATS software by McGarigal (2015) is incorporated in the software CRAN R (R 

development core team 2011) with the package SDMTools (van der Waal et al. 2015). Using 

this package, 38 different metrics are offered to the user. Most of them are highly auto-

correlated and therefore redundant. It is up to the user to choose the appropriate landscape 

metrics for his research (Uumeaa 2012). 

For this study, all indices that are not comparable are excluded as well as indices based on 

minimum or maximum values, since the aim is to make a comparison of two areas (Colombia 

and Ecuador) that are not of the same size. Standardized metrics and metrics based on the 

mean are more appealing since they can be compared to each other independently. The 

indices shown in table 3 are chosen for the analysis of fragmentation due to deforestation: 
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Table 3: List of landscape metrics used in the study 
 

Metric Description Unit 

Number of 

patches 
Absolute number of patches of certain class. Absolute numbers 

Landscape 

shape index 

(LSI) 

A standardized index adjusted for square shapes 

(suitable for raster datasets) and is representative 

for edge density (Patton 1975). 

No specified unit, but 

as LSI rises, landscape 

becomes more 

irregular. 

Mean patch 

area 
Average size of a patch of certain class. Square meters 

Mean fractal 

dimension 

index 

Reflects average of the complexity of a patch. 

No specified unit, but 

approaches 1 for 

simple shapes and 2 for 

highly complex shapes. 

Mean core 

area 

Average area of a patch located in the center of a 

patch, leaving a certain distance to the patch 

perimeter 

Square meters 

Core area / 

total patch 

area ratio: 

The ratio of mean core area and mean patch area. 

In this way, the effect of size changes in mean 

patch area on the core area can be expressed. As 

core area is also related to shape complexity, this 

metric also allows further insight on this. 

Percentage 

Landscape 

division index 

Reflects the probability that two randomly placed 

pixel are NOT in the same patch (Jaeger 2000). 

Representative for fragmentation and 

connectivity. 

Percentage 

 

As input data for calculating landscape metrics with SDMTools, binary forest/ non-forest 

maps are computed for each target year (1986, 1999 and 2013) from the classification map, 

for each country respectively. This way, it is possible to compare fragmentation of forest and 

non-forest over time in Colombia and Ecuador.  
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4. Results 

 

4.1. Compositing 

Although derived from several images, compositing results do not provide entirely cloud free 

data. Figure 3 depicts the count of clear observation pixels in the composites of the target 

years. Especially in the northwest of the study area, no clear observations are taken from any 

acquired Landsat image. Nevertheless, compositing makes clear observation possible for 

95.6% of the pixels in 1986, 99.5% in 1999 and 98.9% in 2013. 

 

 

 

4.2. Classification 

The change detection classification yields good overall accuracies on both sides of the border. 

For Colombia, the overall accuracy is 93.48% (with a standard error of 1.28%) while Ecuador's 

overall accuracy is 93.97% (with a standard error of 1.22%).  Both confusion matrices are 

shown below in table 4 and 5. User’s accuracy reflects the possibility that a pixel truly 

belongs to the class that it is classified as. Producer’s accuracy reflects the possibility that a 

reference pixel is correctly classified (Lillesand et al. 2015). Error of commission is 

complementary to user’s accuracy while error of omission is complementary to producer’s 

accuracy. Sample counts are not adjusted to sampling bias, but accuracy and error values 

have undergone area adjustment, meaning that they are calculated with sample count values 

adjusted to the area proportion of the class they represent (Olofsson et al. 2013).  

 

Figure 3: Clear pixel count for each target year composite 
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Table 4: Confusion matrix and accuracy values for Colombia 

 

 

Classification results for Colombia show best user’s accuracy for the stable non-forest class 

and best producer’s accuracy for stable forest. Accuracies are mostly over 90%. Only change 

class DF 2013 shows lower values when looking at its user’s accuracy (85%), but at the same 

time high values for producer’s accuracy. There is no class specific confusion among the 

classes. Change classes DF 1999 and DF 2013 show almost no confusion among themselves. 

Confusion of validation pixels labeled as stable classes PF and NF does not affect producer’s 

accuracy strongly because of area adjustment. 

Table 5: Confusion matrix and accuracy values for Ecuador 

 

 Reference class    

Map class PF DF 1999 DF 2013 NF Sum 
User’s 

accuracy 
(%) 

Error of 
commission 

(%) 
PF 108 1 1 4 114 94.74 5.26 

DF 1999 2 58 0 4 64 90.63 9.37 
DF 2013 7 1 51 1 60 85 15 

NF 1 5 0 121 127 95.28 4.72 
Sum 118 65 52 130 365   

Producer’s 
accuracy 

(%) 
95.06 90.04 95 93.57  

 

Error of 
omission(%) 4.94 9.96 5 6.43 Overall accuracy (%) 

93.48 

 Reference class    

Map class PF DF 1999 DF 2013 NF Sum 
User’s 

accuracy 
(%) 

Error of 
commission 

(%) 
PF 187 2 4 1 194 96.39 3.61 

DF 1999 3 55 0 2 60 91.67 8.33 
DF 2013 1 4 52 3 60 86.67 13.33 

NF 3 2 1 54 60 90 10 
Sum 194 63 57 60 374   

Producer’s 
accuracy 

(%) 
97.62 84.05 82.72 93.1  

 

Error of 
omission(%) 2.38 15.95 17.28 6.9 Overall accuracy (%) 

93.97 
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Classification results for Ecuador show best user’s accuracy values for stable forest class and 

best producer’s accuracy as well, both attributed by values over 95%. Stable non-forest class 

NF shows also good accuracies with values of 90% for user’s accuracy and 93.1 for producer’s 

accuracy. Change classes DF 1999 and DF 2013 show more confusion among themselves than 

in Columbia and yield lower producer’s accuracies, resulting in errors of omission of more 

than 15%. User’s accuracy yield better values for the change classes, especially for DF 1999 

with 91.67%.  

 

4.3. Area distribution 

Figure 4 shows the result map with the spatial distribution of classes in Colombia and 

Ecuador. Due to cloud cover and masking of water and elevations higher than 800 meters, 

9.96% of the Colombian share of the study area and 1.3% of the Ecuadorian remain 

unclassified. 

 
Figure 4: Classification map with two subsets for spatial detail; Subset one shows an example for Colombia, 

subset two for Ecuador 
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Figure 5 depicts the relative shares of the 

different classes in Colombia and Ecuador with 

error bars indicating the 95% confidence 

intervals for the class estimations. The largest 

class in Colombia is the stable non-forest class 

(NF), occupying 39.6% of its share. Around 

34.6% of the Colombian share is classified as 

stable primary forest (PF). The larger change 

class is DF 1999 with 19.6% of Colombian 

territory being deforested between 1986 and 

1999. Second change class DF 2013 only 

accounts for 6.1% of the total Colombian area.  

Classification reveals that Ecuador’s most 

prevailing class is stable primary forest (PF), 

holding 63.2% of the its share. The remaining 

classes show lower values with the stable non-

forest class (NF) being the second largest class 

in Ecuador (16.2%). Both change classes show 

low shares. DF 1999 indicates that the 

deforested area between 1986 and 1999 was 

slightly larger (11.3%) than in the following 

period from 1999 to 2013 (9.3%).  

Differences in temporal change of forest / non-

forest land cover fractions between Colombia and Ecuador become clearer looking at figure 

6. In 1986, forest in Colombia covers 60.4% of the study area, as forest in Ecuador 83.8% with 

only 16.2% being converted to non-forest at that time. From thereon, deforested area 

constantly rises in Ecuador until reaching a relative cover of 36.8% in 2013. On the Colombian 

side, deforestation increases remarkably until 1999 when occupying 59.3% of the area. Yet, 

between 1999 and 2013 strong increase diminishes (65.4% non-forest in 2013), while 

deforestation rates in Ecuador remain almost constant over time. 

 

Figure 5: Relative share of classes with error bars 

Figure 6: Dynamic change of forest and non-forest 
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4.4. Pattern and fragmentation (landscape metrics) 

   

Results of landscape metrics show that most metrics increase during study the whole study 

period. Metrics-wise results are plotted and shown in figure 7-13. Plots show landscape 

metrics in a temporal, countrywise and land cover dimension.  

 

Number of patches:  

Number of forest patches increases similarly in 

both countries. The increase is higher in the 

first time period and then becomes weaker. 

Yet, the total number of patches is constantly 

lower in Ecuador although sharing a larger 

area. Colombia’s forest however can be 

described as patchier.  

As number of forest patches increases, number of 

non-forest patches decreases in both countries. The decrease until 1999 is stronger in 

Colombia. In the second time period, decrease is stronger in Ecuador. Contrary to forest 

patches, Ecuador’s number of non-forest patches is constantly higher than Colombia’s, 

suggesting that Ecuador’s non-forested landscape is patchier.  

 

Mean patch area:  

As the number of patches increases, the mean 

patch area of forest patches consequently 

decreases. The reverse effect occurs for the 

non-forest patches. The strength of the decline 

varies over the years. In the first time period, 

forest mean patch area diminishes 4.88 ha/year 

in Ecuador (1.8 ha/year in Colombia). Whereas 

in the second time period, this rate only accounts to a 

shrinkage of 0.82 ha/year (0.26 ha/year in Colombia). Colombian mean patch area of non-

forest patches becomes larger than forest patches between 1986 and 1999. Ecuador’s forest 

mean patch area declines but remains larger than non-forest mean patch area. 

Figure 7: Number of patches 

Figure 8: Mean patch area 
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Mean core area:  

Figure 9 underlines the strong relationship 

between mean patch area and mean core area. 

Trends seem almost identical to the metrics 

shown in figure 8. 

 

 

 

 

Core area / total patch area ratio:  

Figure 10 quantifies the relationship between 

mean core area and mean patch area. Values 

for Ecuadorian forest patches are higher than 

Colombian, yet both declining over time. Non-

forest patches values increase over the time 

with Colombian patches representing higher 

values.  

 

 

Mean fractal dimension index:  

All index values are close to one, indicating that 

in general patches have a simple perimeter. Yet, 

Colombian forest patches show higher values 

than Ecuadorian and vice versa for non-forest 

patches. Forest patches index declines while 

non-forest patches perimeter complexity 

increases over the years.  

 

 

 

 

 

Figure 9: Mean core area 

Figure 10: Core area / total patch area 
ratio 

Figure 11: Mean fractal dimension 
index 



4. Results   Simon Thomsen 

27 
 

Landscape shape index (LSI): 

LSI indicates increasing values for forest patches 

over the years. Increase becomes lesser during 

the observed time periods. Colombian forest 

patches show higher values than Ecuadorian, 

indicating that forest landscape is more 

fragmented. Non-forest patches of Ecuador show 

an irregular trend, while Colombian patches 

decrease slightly over time. 

 

Landscape division index:  

Index values show increase over time for forest 

patches and decrease for non-forest patches. 

While the probability that two randomly placed 

pixel are not in the same patch was still around 

80% in Ecuador in 1986 (95% in Colombia) it 

rises up to 95% in 2013 (98% in Colombia). 

Increase in Ecuador is therefore more drastic than in Colombia. On the other hand, one can 

observe a drastic decrease of probability for non-forest patches in Colombia, reaching till 

values lower than 80% in 2013. 

Figure 12: Landscape shape index 

Figure 13: Landscape division index 
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5. Discussion 

Various differences between deforestation rates and fragmentation patterns have been 

demonstrated above. The following chapter will focus on discussing and interpreting these 

differences and the methods that were applied during the classification process. 

 

 

5.1. Methods 

Median compositing provided a solid basis for the change detection analysis. Yet, some 

artefacts (e.g. haze or cloud shadows) still remain in the median composite. Including more 

imagery and broadening the window of potentially considered acquisition dates could help 

to build cleaner image composites. Furthermore, Griffiths et al. (2013) apply a more 

sophisticated compositing approach by including further parameters such as pixel-to-cloud 

distance. Griffiths et al. (2013) also derive metrics from the compositing process, which could 

be derived as well in for this case when including more images and later be helpful in the 

classification process. 

Pixel labeling in training and validation process was based widely on visual Landsat image 

interpretation and, if available, high resolution data from Google EarthTM. Yet, the high 

resolution data only offers area-wide detailed imagery from the year 2006 onwards, some 

areas from 2002. Thus, only land cover of 2013 and to a lesser extent of 1999 can be 

validated with Google EarthTM. Landsat's spatial resolution of 30 meters does often not allow 

a totally reliable classification of a pixel. However, best efforts were made during the training 

and validation to assign pixels to their corresponding class. 

The classification itself provided very good results. TC as input data for random forest 

classification proved to be solid, especially TC Brightness and TC Wetness proved to be valid 

indicators for discriminating forest and non-forest areas. There was no obvious categorical 

misclassification of pixels. However, some patches in the north west of the study area were 

misclassified as intentionally deforested when probably caused by natural disturbances. 

Forest disturbances caused by landslides are natural components of the local ecosystem and 

even important for it (Richter 2009). They occur mostly in the mountainous regions of the 

Andes, where high precipitation also prevails (Lozano et al. 2005).  

A limitation concerning labeling and interpretation was time series density. Leaving gaps of 



5. Discussion   Simon Thomsen 

29 
 

thirteen and fourteen years in each time period, deforestation becomes more difficult to 

identify than in the case of denser time series. Vegetation succession on abandoned cleared 

plots occurs fast in the Amazon (Moran et al. 2000). Deforested plots therefore may appear 

as secondary forest after over ten years of vegetation succession. Applying dense time series 

with annual data would enhance the understanding of land cover and land use dynamics in 

the study area and thus lead to more accurate mapping. Yet, this present study already 

shows that data availability is scarce and that creation of annual imagery may lead to 

difficulties in data quality. A bi-annual compositing approach would be a promising and 

feasible approach. 

Apart from improving map accuracies, dense time series and annual deforestation rates can 

give more insight about the linkages between land cover dynamics and socioeconomic 

processes in the past. In this study, it is obligatory to generalize results from classification and 

landscape metrics over thirteen and fourteen years respectively, which results limiting when 

making linkages to socioeconomic processes.  

 

 

5.2. Deforestation rates  

There are several connections between deforestation rates or landscape metrics on the one 

side and armed conflict, coca cultivation and migration on the other side, which will be 

discussed in this section. 

Many studies have proven that the introduction of illicit crops (coca) is related to forest 

clearing in that area in Colombia (Álvarez 2007, Armenteras et al. 2006, Etter et al. 2006) and 

also especially in southern Putumayo (Viña et al. 2004). Deforestation rates calculated in this 

study for Colombia also coincide with changes in coca production in Putumayo. The United 

Nations Office on Drugs and Crime (UNODC) evaluates coca cultivation in Colombia annually. 

Data from these reports show, that coca cultivation intensified rapidly between 1995 and 

2000 (figure 14). This trend does not apply to coca cultivation on a national level in the same 

way, as Putumayo's share of national production in 1995 was 12.4% and rose to 40.4% in 

2000 (figure 14). The department became the hotspot for illicit crops in Colombia during this 

time and there was high demand for further land to cultivate on (Viña et al. 2004). 

Calculated deforestation rates of almost 20% between 1986 and 1999 can be related to this 

pressure. After 2000, the governmental program Plan Colombia became effective in 
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Putumayo with large aerial fumigations using glyphosate. Fumigation were especially severe 

in 2001 and 2002 (CNMH 2015) but aerial spraying prevails until 2014 as well (UNODC 2015). 

Rigorous governmental policy led to a significant decrease of coca cultivation in Putumayo 

(figure 14). Another reason for this shrinkage is that coca farmers received compensation 

paying if they would change to substitutional crops (Ramírez 2001). These policy changes and 

decreasing coca cultivation are also reflected in the decreasing deforestation rates between 

1999 and 2013.  

 
Figure 14: Coca production in Putumayo in hectare. Colors indicate the relative share of Putumayo's production 

on national scale. Data source: UNODC 2015 
 

Deforestation rates in Ecuador appear more equilibrated over the two time periods than in 

Colombia. However, some drivers of deforestation have also changed here over time.  

The economic crisis in Ecuador in 2000 and the change of the national currency to US-Dollar 

had significant effects on the external trade of the country. Not being able to devaluate its 

own currency anymore, Ecuador's exportation of primary goods declined after the economic 

crisis (Larrea 2004). Although mostly in minor scales, coffee production was an important 

economic component in Sucumbíos and in 1990 around 10% of the national coffee output 

was produced here (Marquette 1998). Coffee farmers also suffered from export decline after 

2000 (Vega & Purdy 2013), which can imply mitigating effects on agricultural expansion. 

Another effect of the economic crisis was a mass migration of Ecuadorians towards foreign 

countries (Jokisch & Pribilsky 2002). This led to a population growth decline from 2000 

onwards in comparison to the decades before, when Sucumbíos was the Ecuadorian province 

with the highest population growth rates. From 1990 to 2001, annual population growth rate 

was 4.67%, turning into 3.48% from 2001 to 2010 (INEC 2010). 

Still, population growth continued to a lesser extent, triggering further agricultural 
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expansion. Pichón et al. (2001) describe that forest clearing intensity of a property depends 

on the length of settlement. Settlers expand their agricultural activity gradually on their lots 

with the duration of their, as they accumulate sufficient money over the time for new 

investments (Pichón et al. 2001).  

Another possible triggering driver for deforestation in Sucumbíos is the improving 

infrastructure. The government of Rafael Correa has made large investments in public 

infrastructure from 2007 onwards (Becker 2013). Thus, remote areas of Sucumbíos became 

more accessible over time, facilitating agricultural expansion there. 

Demographic changes, agricultural expansion, economic factors, market accessibility and 

infrastructure are all factors listed as potential drivers for tropical deforestation (Geist & 

Lambin 2001). Ecuador's slight decline of deforestation from 1999 to 2013 can therefore be 

attributed to a synergy of all changes within these drivers triggering or mitigating 

deforestation. 

Viña et al. (2004) have studied deforestation rates for the study area from 1973-1985 and 

1985-1996. Deforestation trends from this study show that deforestation rates from 1973 to 

1985 were lower than the second period, suggesting that deforestation between 1985 and 

1999 was more severe than the decades before and after. For Ecuador, Viña et al. (2004) 

detected decreasing deforestation rates from the first time period (1973-1985) to the second 

(1985-1996). Considering the results of this study, this declining trend can be extended for 

the time period 1999-2013 as well. Sierra (2013) describes a similar trend for Ecuador for the 

time periods 1990-2000 and 2000-2008.  

At this point it is important to stress that this study only focuses on deforestation as a forest 

transition process and hence ignores natural succession or afforestation. Hansen et al. (2013) 

mapped deforestation and reforestation on a global level from 2000 onwards. Although 

being a global product and therefore not specifically adapted to the study area, their model 

shows widespread reforestation in southern Putumayo. Moreover, Colombia experienced 

reforestation and vegetation gain in different parts of the country, which can be linked to 

land abandonment as consequence of the armed conflict (Sánchez-Cuervo et al. 2012, 

Aguilar et al. 2015). However, there are no evidences for such linkages in Putumayo yet. 

Another important aspect is the definition of reforestation. Hansen et al. (2013) define forest 

as vegetation higher than 5 meters. As succession of vegetation is fast in the tropical Amazon 

(Moran et al. 2000), global deforestation mapping does not provide sufficient information to 
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draw conclusions about long term forest gain trends. Still, recent developments in the 

Colombian armed conflict and its influence on forest loss and gain remains an important 

topic and deserves further investigation. 

 

 

5.3. Deforestation pattern and fragmentation 

Geist & Lambin (2001) distinguish between different types of deforestation patterns that are 

product of different underlying causes. From a visual interpretation of the classification map, 

the Colombian deforestation pattern can be classified as a diffuse pattern, while the 

Ecuadorian pattern is a so-called fishbone pattern. Diffuse patterns are typical for 

smallholders’ agriculture and traditional farming and the deforestation is characterized by 

small cleared patches inside the forest. The fishbone pattern is characterized by deforested 

lots reaching often orthogonally into the forest from a road. Studying different examples of 

deforestation patterns, Geist & Lambin (2001) came to the conclusion that a fishbone pattern 

corresponds to pro-deforestation governance and strong policy making in the study area. In 

Ecuador, colonization of Sucumbíos and agricultural expansion in the northeast Amazon was 

an official governmental process until 1994 (Wasserstrom 2013). The relationship between 

governance and the deforestation pattern in Ecuador therefore matches with the findings of 

Geist & Lambin (2001). Results from their study also show that the diffuse deforestation 

pattern is linked to policy failures. This is also proven to be the case in Colombia, considering 

illegal land allocation, armed conflict and the cultivation of illicit crops.  

 

Generally, most of the presented landscape metrics in this study emphasize the ongoing 

deforestation processes in both countries. Yet, selected metrics contain important data for 

comparing fragmentation processes on both sides on different levels. 

The forest in Colombia is more fragmented, as the number of forest patches is constantly 

higher than in Ecuador and still growing, suggesting that fragmentation of forest will 

continue. Moreover, the mean size of Colombian non-forest patches is clearly larger than 

Ecuadorian. This indicates that either cultivation lots are larger or new generated lots are 

merged to already existing ones. Knowing that most of the farmers in Putumayo are 

smallholders, the latter is more probable.  
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However, the mean fractal dimension index reveals that non-forest patches in Ecuador have 

more complex shapes in average, as cleared parcels in a fishbone pattern tend to have 

oblong rectangular shapes while cleared patches in the diffuse pattern in Colombia result in 

less complex and rounder shapes. 

From ecological aspects, Colombian forest fragmentation is more damaging to native fauna 

than Ecuadorian. The ratio between the mean core area and the mean total patch area 

implies that only 66% of an average Colombian forest patch accounts for core area in 2013, 

while in Ecuador this values accounts for 82%. The size of the core area is an important factor 

in habitat fragmentation as the occurrence of animal species is correlated to it (Smith et al. 

2011). 

Colombian habitat fragmentation is emphasized by the landscape division index, as the 

probability of two individuals not to be located randomly in the same forest patch is 98% in 

2013, which indicates that connectivity among forest patches is extremely low. Yet, Ecuador 

has experienced a degrading forest connectivity over the last years, as values in 1986 still 

were around 80% and reached 95% in 2013 (figure 13). 

 

The obtained landscape metrics in this study are supported by calculated metrics from Viña 

& Estévez (2013) who also analyzed forest fragmentation along the Colombian-Ecuadorian 

border. Although not explicitly the same metrics were used, results and trends agree with the 

findings of this study as in both forest becomes patchier and more fragmented with stronger 

fragmentation indicators for Colombia. Batistella et al. (2000) provide another example of 

landscape metrics application in the context of deforestation in the Amazon, also trying to 

quantify differences between a diffuse and a fishbone deforestation pattern. Results reveal 

that the latter one appears to be more fragmented, contrary to the case of Putumayo and 

Sucumbíos. Yet, in both cases the pattern with a higher share of deforested area shows more 

advanced fragmentation. 

Therefore, it is questionable to what extent landscape metrics can be used to differentiate 

between certain deforestation patterns or if they rather only reflect the expansion of 

deforestation. 
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6. Conclusion 

The results of this study allow drawing several linkages between dynamics and differences of 

deforestation rates and patterns and changing socioeconomic conditions and governance in 

Colombia and Ecuador. 

Especially in Colombia, the direct influence of growing of illicit crops on the forest and 

environment is noticeable due to the decline of coca cultivation and deforestation rates in 

Putumayo (Colombia) in the second study period. Several factors with intensifying or 

mitigating properties are detected for explaining almost stable deforestation dynamics in 

Sucumbíos (Ecuador). Yet, data gaps of thirteen and fourteen years between the studied 

composites complicate more accurate determination of deforestation drivers.  

Visual interpretation of deforestation patterns proves the influence of governmental absence 

in Putumayo and pro-deforestation policies in Sucumbíos on spatial patterns as described by 

Geist & Lambin (2001). The quantifying approach using landscape metrics reveals that forest 

is more fragmented in Colombia and that fragmentation increases over time in both 

countries. However, this approach also shows limitations when making direct links between 

forest fragmentation and governance without considering the deforestation rates and total 

amount of deforested area.     

The results of this study support conservation planning on both sides of the border. With the 

Colombian peace treaty signed June 2016, the longest conflict in the western world comes to 

an end (Nussio 2016). Anyhow, the implications of peace in Colombia for the environment 

remain uncertain. The presence of guerilla troops inhibited the establishment of large 

extractive industry in many cases (Álvarez 2001). Therefore, forest area protection should be 

considered in southern Putumayo in order not to push further deforestation and forest 

fragmentation. A region severely marked by armed conflict and coca cultivation, southern 

Putumayo will be an interesting area for remote sensing monitoring in the following years in 

order to enhance understanding of the impact of socioeconomic transitional periods on land 

use change and forest dynamics.   

Combining Landsat data with upcoming Sentinel-2 imagery will improve data availability for 

the study area (Masek 2015) and thus enable denser time series for better monitoring and 

more accurate mapping in the future. 
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1. Appendix: Deforestation patterns described by Geist & Lambin (2001), p. 66. 
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2. Appendix: Learning curve (out-of-bag-accuracy) of the random forest model. Taken from 

the html report imploded in the Image RF application (Enmap Box, van der Linden et al. 

2015). 

 
 

3. Appendix: Normalized variable importance of random forest input variables (TC composite 

stack). Taken from the html report imploded in the Image RF application (Enmap Box, van der 

Linden et al. 2015). Variable index: 0=TC Brightness 1986, 1=TC Greenness 1986, 2=TC 

Wetness 1986, 3=TC Brightness 1999, 4=TC Greenness 1999, 5=TC Wetness 1999, 6=TC 

Brightness 2013, 7=TC Greenness 2013, 8=TC Wetness 2013. 
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