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Abstract 

Does the intensification of agriculture spare land for nature and thus slow down deforestation, 

or rather trigger counteracting rebound effects that motivate cropland expansion and 

accelerate forest loss? Prevailing complexity in land systems makes it impossible to arrive at 

an explicit answer to this controversy. Yet, given the tremendous, often irreversible, social 

and ecological tradeoffs of land use change, it is crucial to identify critical factors that 

condition whether intensification leads towards an expanded or contracted agricultural 

footprint – particularly in the weakly protected tropical dry forests already now experiencing 

high and rising pressure from agricultural frontiers. Drawing upon theories and empirical 

evidence, I built a causal model comprising different pathways of how intensification relates 

to deforestation under diverse social-ecological contexts. To estimate the effect of country-

level yield growth on forest loss between 2000 and 2020 and investigate the established 

mechanisms, I applied a Bayesian multilevel modeling framework exploring both global trends 

and continent-specific variations. I found that in tropical dry forests, a 100% increase in yield 

was associated with a 3.8% increase in forest loss. Hence, higher yields have reinforced rather 

than reduced forest loss, but contextual factors diversify the outcome: While economic 

incentives of globally integrated, commercialized commodity agriculture can trigger strong 

rebound effects, constraints on land availability and accessibility facilitate land sparing in the 

concerned areas. Likewise, Indigenous or community land management fosters land sparing, 

especially in South America where land formalization is comparably advanced. Governance 

and global trade position have not shown clear effects. Given prevailing trends of global 

agriculture, among them the growing importance of agribusinesses and global markets, my 

findings have crucial implications on future land-use and conservation strategies – most 

importantly challenging oversimplified land system representations and highlighting the need 

for contextual and place-specific solutions. 

 

 

Keywords 

land systems, rebound effect, land sparing, Bayesian modeling, commodity frontier, 

Indigenous people, specialization trap  
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1. Introduction 

Global demand for land-based products is and will continue to grow1. While the provision of 

food, fiber, and fuel is essential to human societies, land use is also a major driver of global 

environmental change2,3, and especially the expansion of modern farming systems into 

natural ecosystems involves tremendous social and ecological trade-offs – which are no less 

critical to human societies. In the last 50 years, agricultural frontiers have shifted from 

temperate regions to the tropical forests1,4,5, where they cause massive carbon emissions and 

pose a severe threat to local livelihoods, their unique biodiversity, and key ecosystem 

services6,7. How human societies use, manage and interact with land is thus a key driver of 

many sustainability challenges and identifying effective land-use interventions constitutes a 

priority for research and policy3,8,9. Yet, while such interventions are crucial for better 

balancing land-use trade-offs, they also constitute a potential lynchpin for sustainability. And 

despite the centrality of sustainability debates, land use interventions are still often based on 

incomplete understanding, partial framings, or misconceptions10. 

Intensification of agricultural production constitutes such critical intervention. 

Considering multiple and growing demands on productive lands11, intensifying agriculture is 

often seen as path for sustainability12, to lessen competition for productive land, to reconcile 

agricultural production and environmental conservation, and finally prevent forest loss13–15. 

Yet, the dynamics and outcomes of intensification remain insufficiently understood, and there 

is heated debate about whether productivity-increases slow down or amplify 

deforestation12,14,16. On one hand, the so-called Borlaug hypothesis of land sparing postulates 

that intensification, by fulfilling a given demand for land-based products with a smaller land 

base, releases land for other uses including conservation. On the other hand, an alternative 

hypothesis builds on the “rebound effect” or “Jevons’ paradox”17,18 describing how 

intensification increases agricultural profits, thus encouraging further expansion12,19,20.  

Understanding which of these hypotheses better explains the relationship of 

agricultural intensification and deforestation is critical, because cursory understanding does 

not only translate into a higher risk of misdirected governance schemes, failure of 

conservation action, and missed opportunities21 but is also likely to backfire by triggering more 

forest loss with devastating outcomes for biodiversity and climate. Since the prevalence of 

complexity in land systems makes it difficult to arrive at an explicit answer to this controversy, 



 3 

it is crucial to identify factors that condition on the outcome of intensification and understand 

how different social-ecological contexts make places more or less susceptible to unintended 

spillovers. So far, two main shortcomings in research have prevented systemic understanding 

on how intensification relates to deforestation. 

First, research on forest dynamics has generally lacked a systematic focus on causal 

analysis7,22,23 and surprisingly little effort has gone into tracing, identifying and estimating 

causal pathways of intensification spillovers. Although scholars have pointed towards 

potential impact of different factors (see Conceptual Background), these variables have not 

been combined in a systemic and causal analysis yet. This impedes the development of a 

stronger evidence base to inform policy decisions. Second, research on intensification 

spillovers has often lacked an appropriate scale. While local case studies24–38 have generated 

insights that are not readily transferable to other places39, aggregate global scale studies have 

contributed to an overarching perspective15,16,39–44 but hide that net land savings at the 

planetary level may co-exist with forest loss at the local level15,20,45. This is crucial, because 

land sparing findings at the global scale do not only indicate avoided expansion into natural 

ecosystems but can equally stem from cropland abandonment in ecologically less sensitive 

regions which would be less desirable from a conservation point of view13,45.  

These considerations demonstrate the need for broad-scale studies on causal 

mechanisms in those ecoregions that face the most active agricultural frontiers while not 

disregarding patterns that manifest at finer spatial scales. In my study, I address these 

research challenges for the world’s dramatically under-researched tropical dry forest (TDF)46–

48 to better explore, whether yield-enhancing intensification does benefit conservation of 

native biomes in the ecologically most sensitive ecosystems, or not. TDF harbor exceptionally 

high biodiversity49 and provide livelihoods for approximately one quarter of the global 

population50 but have been mostly overlooked by science und politics48,49 and remain weakly 

protected47,51. This is worrisome given TDF regions currently face high and rising human 

pressure, especially from drastically expanding agricultural frontiers. The knowledge gaps 

outlined above are barriers to more effective policy design preventing further exploitation of 

these sensitive social-ecological systems. 

While previous works have explored intensification spillovers mainly against the 

backdrop of single factors, resulting in considerable shortcomings regarding systemic 

understanding and transferability of insights in space, I make progress in adopting a more 
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holistic perspective. My objective is thus to identify shaping factors that condition whether 

agricultural intensification in TDF leads towards an expanded (rebound effect) or contracted 

(land sparing) agricultural footprint. Therefore, I combine the understanding of causal 

mechanisms through which intensification relates to deforestation, with statistical 

investigation of the causal effects resulting from these mechanisms. More specifically, I select 

variables informed by theories and case studies, and build a causal model linking these 

variables together to answer: 

i. Has agricultural intensification slowed down or accelerated deforestation in the 

world’s tropical dry forests? 

ii. What factors condition on the direction of the intensification-deforestation 

relationship? 

iii. How do these mechanisms vary across continents? 

As a novelty in the field of land system science, I apply a Bayesian multilevel modeling 

framework to investigate causal mechanisms in land systems by estimating their 

corresponding average global effects as well as continent-specific variations. 

2. Conceptual Background 

Research on deforestation and agricultural intensification as land-use intervention is situated 

in the field of land systems science, thus being concerned with understanding the causes and 

impacts of land-system changes, as well as assisting in projecting changes and their 

consequences in the near-term future52,53. Analyzing land use through the lens of land systems 

emphasizes systemic aspects including feedback mechanisms, path dependency and 

complexity translating into rapid use transitions, ecological regime shifts, and distant 

impacts53–55. 

2.1. Complexity of land systems 

Land systems constitute complex, adaptive social-ecological systems56 shaped by interactions 

between (a) the different actors and demands that act upon land, (b) the technologies, 

institutions, and cultural practices through which societies shape land use12, and (c) feedbacks 

between land use and environmental dynamics9. 
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Historically, land changes have mostly been attributed to single-factor, local-scale 

causes, such as shifting cultivation or local population growth57. However, with ongoing 

globalization and increasing interconnectedness of (geographically distant) social-ecological 

systems, land-use change pathways – and their respective scientific handling – have gained 

complexity on multiple scales. Consequently, causal chains behind the land-change outcome 

of interest have grown in length. This is taken up by the framework of proximate causes and 

underlying drivers of environmental change57. It differentiates between proximate causes as 

human activities or immediate actions at the local level that directly impact land systems, and 

underlying driving forces as fundamental processes, such as human population dynamics or 

agricultural policies that underpin the proximate causes, and potentially operate on distant or 

higher spatial levels57.  

Today, both tropical deforestation and land use interventions, such as agricultural 

intensification, are determined by different combinations of various proximate causes and 

underlying driving forces in varying geographical contexts including economic, technological, 

cultural and political factors and influences by geopolitical interests and governance57,58. 

Understanding and governing land systems with such high complexity is challenging because 

drivers operate both directly and indirectly through dynamic interactions and feedbacks23. 

Complexity also implies that some seemingly rational interventions such as intensifying 

agriculture can trigger counteracting, undesired effects10. This has brought up the need for a 

systemic perspective and made the notion of land-use spillovers a research frontier in recent 

years12. Land-use spillovers describe the process by which “land-use changes or direct 

interventions in land use (e.g. policy, program, new technologies) in one place have impacts 

on land use in another place”12. 

2.2. The land sparing-rebound effect-controversy 

The above-mentioned controversy on land sparing vs. rebound effect is hence dealing with 

possible spillovers of agricultural intensification. The land sparing argument is premised on 

the Borlaug hypothesis which assumes that intensification of agriculture (i.e., increasing 

output per unit of land) spares land for natural ecosystems12,14,26. It seems evident when 

expressed in physical terms: Since globally, food demand is highly inelastic59, increasing 

output per area is a necessary condition for reducing forest loss by avoiding agricultural area 

expansion. Yet, this simple reasoning conceals fundamental assumptions: On one hand, it 
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equates inelastic global food demand with fixed global demand for agricultural products. On 

the other hand, it presumes that food production will increase as long as the initial fixed 

demand is not entirely met and remain constant thereafter60. Both does not sufficiently reflect 

reality. With the greater part of agricultural production being sold on markets, land 

management decisions are for most agricultural actors dependent on economic forces and 

ultimately reflect investment decisions made by farmers60. Pirard and Belna therefore suggest 

a reformulation of the Borlaug rationale from an economic view: an increase in yields leads to 

a decrease in agricultural commodity prices due to excess supply over demand, and finally 

causes supply adjustment through smaller growth in cultivated areas60. However, such 

framing reveals that an equally possible outcome of an increase in yields could be an increase 

in profitability. This ambivalence is taken up by the rebound effect, referring to the paradoxical 

situation where an increase in the productivity of one factor (here cropland) does not result 

in reduced utilization. Its reasoning draws upon the drive to increase profits inherent in 

capitalist modes of production which leads producers try to both reduce costs by reducing 

inputs (i.e., improving efficiency) and increase revenues by expanding18,61. Hence, in land 

systems, the rebound effect describes a type of spillover where adoption of intensifying, yield-

rising practices increases profitability, and thereby stimulates land-use expansion19,23,26. The 

empirical observation of such “backfires”62 questions the validity of deterministic and often 

simplifying grand theories of land systems science such as the theory behind Borlaug 

hypothesis of land sparing. 

Previous literature on the controversy is ambiguous and has shown that there is no 

simple relationship between intensification and cropland expansion. Aggregate global scale 

studies by Burney et al. and Stevenson et al. suggest that historically, the Green Revolution 

has resulted in relative land sparing reducing the rate of agricultural expansion compared to 

the counterfactual scenario without intensification, although net agricultural area still 

increased40,41. Global studies analyzing more recent time periods found no empirical evidence 

for the Borlaug hypothesis either. Villoria demonstrated that in most countries of the world, 

productivity growth is either uncorrelated or positively associated with cropland 

expansion63. Rudel et al. observed that the most common pattern for countries achieving yield 

gains was to expand their agricultural footprint43. Ewers et al. detected a small land sparing 

trend for staple crops, which however disappeared through a significant increase in the 

production of non-staple crops that counterbalance the positive effects39. And most recently, 
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Rodríguez García et al. showed that apart for staple crops, over the long run, intensification is 

unlikely to result in actual land sparing for nature44. Even where intensification does spare 

land, the amount saved is often disputed, given the complexity of interacting effects through 

globalized markets, labor migration and the difficulty of simulating a counterfactual scenario 

without intensification20. 

2.3. Contextuality of intensification spillovers 

Given complexity of land systems, understanding the link between agricultural intensification 

and deforestation requires viewing it within a larger context. So far, empirical studies at global 

or regional scale have pointed to a range of potential influences. On that basis, the following 

portfolio of explanatory approaches first covers economic considerations from micro to macro 

level of agricultural production, then goes beyond a neoclassical theoretical standpoint to 

account for the diversity of actors involved, and finally builds upon concepts from ecological 

economics to include structural patterns of global trade. 

 

 

Figure 1: Conceptual framework. The relationship of agricultural intensification and deforestation is 
shaped by a variety of contextual factors including environmental conditions as well as socioeconomic and 
structural patterns. 
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According to Hertel et al., all relevant information about market outcomes of 

intensification is embodied in one parameter, the price elasticity of excess demand16. It 

indicates to what extent price changes translate into changes in the quantity demanded and 

provides insights into farmers’ potential to increase revenues through improved productivity. 

Low price elasticity of demand (i.e., decrease in production costs does not lead to an increase 

in demand) is expected to make land sparing more likely. This is particularly the case for staple 

crops, and when markets are closed12,16,19: When farmers produce staple crops for their own 

consumption and do not have access to agricultural markets, price elasticity is low, meaning 

demand remains stable and intensification enables them to reach their needs with less lands16. 

In contrast, in the case of non-staple crops – or commodities/”cash-crops” – produced for 

rapidly expanding global markets, prices are insensitive to increases in production so that 

efficiency gains likely increase profitability, thus stimulating cropland expansion42. Statistical 

approaches by Ewers et al. and Rodríguez García et al. have found evidence that the 

intensification of staple crops especially in low-income countries results in land sparing. 

Inversely, they observe that intensification of non-staple crops is associated with a rebound 

effect39,44. Similarly, Hertel et al. used a global simulation framework and their findings 

included that the degree of market integration is a main determinant for potential land 

sparing16. In a range of empirical case studies, authors have revealed how the intensification 

of cash crops produced for global markets, so-called “commodity booms”, have stimulated 

massive forest loss. This has been observed for soybean in Brazil and Bolivia24,25,31, bananas in 

Ecuador32, cocoa beans in Côte d’Ivoire33 and palm oil in Indonesia and Malaysia34. In the 

opposite case, agricultural intensification of crops consumed locally relieved pressure from 

forests, especially in the less productive uplands, as observed for rice in the Philippines35, in 

Indonesia36, and rice and maize in Vietnam37. 

Price elasticity, as economic theory-based all-embracing parameter for the 

intensification controversy, only works under the preconditions of perfect markets60. When 

acknowledging the circumstances of imperfect markets, which are closer to the reality on the 

ground, several factors are likely to moderate demand impact, most of all, land supply. From 

this regard, land sparing seems more likely to occur, when there are biophysical and 

institutional restrictions on cropland expansion12,19,64. Case studies on intensification of 

domestically consumed crops support the hypothesis that land sparing is more likely under 

conditions of agricultural suitability and accessibility constraints. Under these circumstances, 
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productivity enhancing technologies in the lowlands led to abandonment of low productive, 

e.g. slash-and-burn, cultivation on steep slopes in uplands35–37. In another study dealing with 

land constraints in the form of land zoning in Costa Rica, Fagan et al. observed how the rate 

of clearance of mature forests halved after the government zoned forests as off-limits for 

agricultural expansion38. In line with these findings, Meyfroidt et al. compared six published 

case studies of rapid commodity crop expansion and concluded that scarcity of suitable 

forestland, constrained by agroecological and accessibility conditions, and land use policies, 

was associated with a lower share of forest conversion26. Finally, Rudel et al. investigated 

paired country-level changes in yields and cropland for ten major crops and detected land 

sparing only in countries with strong land use policies incentivizing conservation set-asides43. 

Empirical studies have thus provided evidence on the significance of strong 

governance to enforce land use policies. However, Ceddia et al. have shown that it is not 

generally the level of governance but primarily specific aspects and types of governance that 

determine whether intensification is likely to promote land sparing27. By distinguishing 

between conventional and environmental dimensions of governance, they found that only 

strong performance in the latter led to a contracted footprint. Contrarily, in countries with 

high quality of conventional governance (i.e., low corruption, high rule of law, high voice, and 

accountability), agricultural intensification led to a rebound effect, presumably because 

conventional aspects of governance are associated with conditions necessary for the 

establishment of a market-oriented society, rather than environmental protection per se. 

Thus, under strong conventional governance, economic activity including agriculture tends to 

expand and, in the absence of effective environmental protection measures, leads to 

environmental degradation. 

Above-outlined mechanisms related to price elasticity, land availability and policies are 

linked to a neoclassical economic perspective not distinguishing between different types of 

ownership and cultivation. Such view, implicitly considering all farmers rational economic 

agents that respond primarily to market incentives, often fails to identify the complexity of 

farmers’ operational decision-making65. De facto, different pathways of agricultural spillover 

effects have often been traced back to the cultural context and actors involved37,45,66. A broad 

distinction can be made between smallholders (i.e., small, family farms operating with limited 

capital, and labor-intensive techniques) and large-scale actors (i.e., large, privately-owned 

farms, government parastatals or agro-industrial operations, often engaged in capital-
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intensive agriculture)26. Based on household survey data from the Philippines, Coxhead et al. 

assume that smallholders tend to emphasize different objectives by generally seeking food 

self-sufficiency and risk avoidance more than large farmers29. Meyfroidt et al. determined that 

expansion behaviors of small-scale and large-scale actors differ due to different constraints 

and opportunities associated with farm size26. Within their case study comparison, they 

observed that smallholders tend to use their already-cleared agricultural lands to develop 

commodity crops while large companies preferentially converted forests especially in regions 

with loose legal frameworks and limited recognition of customary rights on forestlands. 

Gutiérrez-Vélez et al. further noticed that although palm oil smallholder accounted for most 

cropland expansion in Peru, they mostly spread into degraded pastures and secondary forests, 

while large palm oil companies preferentially converted state-owned forests30. It is thus 

hypothesized that largescale high-yielding agriculture expands into state-owned primary 

forests rather than already cleared lands, to minimize transaction costs and avoid negotiations 

on land under patchy, uncertain or disputed tenure26,30. Furthermore, Kaimowitz and Smith 

found that in Brazil, cash-related restrictions prevented smallholders from using certain 

technological innovations that were adopted by large commercial farmers and finally 

associated with large-scale deforestation24. Eventually, there is ambiguity about the impact of 

Indigenous or local community land management at curbing deforestation. While BenYishay 

et al. have not identified any effect of formalizing land rights to Indigenous communities in 

the Brazilian Amazon67, Baragwanatha and Bayi conducted a statistical analysis in the same 

study area, and found that granting property rights significantly reduces the levels of 

deforestation inside indigenous territories68. The authors argue that indigenous traditional 

land use, based on collective ownership, fulfills the necessary requirements for successful 

common-property resource management. In line with this, Pacheco and Meyer found that 

tenure by specifically indigenous communities reduced deforestation more effectively than 

any other property regime69. 

So far, I have demonstrated that the intensification-deforestation relationship is 

potentially shaped by a diversity of local contextual factors including target market, crop type, 

constraints on land supply, policy environment and actor-related characteristics of land use. 

Beyond that, land systems, and particularly intensification outcomes, are affected by 

structural patterns inherent in global economy. Since they manifest themselves in the 

relationship of trade and environment, different schools of thoughts from economy can be 
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applied for studying the subject. Leveson-Gower recognizes three different approaches: 

neoclassical economics, environmental economics, and ecological economics70. The former’s 

rationale is based on Ricardo’s law of comparative advantage, meaning that every country will 

benefit from trade as long as the cost ratios differ between countries in the absence of it. As 

a follow, trade is assumed to generate welfare increases for all participants, and 

environmental policies are regarded as potentially harmful71. Although the second approach, 

environmental economics, generally agrees in terms of the positive relationship of trade and 

environment, it postulates that raising environmental standards would encourage sustainable 

development, instead of jeopardizing trade72. The third school, ecological economics, 

questions the ability of the trade system itself to promote ecological sustainability. Based on 

empirical observations of the relationship of trade, economic growth and welfare, ecological 

economists challenge the comparative advantage, and instead argue that trade leads to 

absolute advantage for some and absolute disadvantage for others72. The latter perspective 

is the one I am going to adopt, to reason why trade facilitates structural asymmetries. Linking 

this narrative to the concept of social-ecological traps, can contribute to understand cross-

country difference in vulnerability to rebound effects. 

Many authors describe how international trade taking place in an unequal playing field 

can lead to environmental cost-shifting from high-income to low-income countries73–75. They 

refer to the externalization of environmentally damaging withdrawal and production activities 

from the “core” of the global economic system to its “periphery”76–78. Muradian and Martinez-

Alier further specify that low- and middle-income countries’ positions in global supply chains 

and their respective role in the world economy might generate a “specialization trap”72: When 

the economic activity is specialized on natural resource-intensive, non-processed products, 

attempts to increase earnings by increasing supply are under current economic conditions 

often not successful in generating revenues or promoting innovative development72,79. 

Instead, since raw-material production tends to experience relatively weaker productivity 

growth than manufacturing, countries are prone to face deterioration in the terms of trade 

and a downward pressure on prices, especially when standards are low and institutions weak80. 

Under this trap-like scenario of absent economic development and price depression, 

intensification is unlikely to result in land sparing. The phenomenon here named 

“specialization trap” can be related to the discussion about “Dutch disease”81: It describes 

how positive trade shocks, i.e. rapid inflows of foreign exchange e.g., through natural resource 
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booms push up the value of local exchange rates. In turn, production of non-boom exports 

and activities is discouraged, because they potentially compete with the lower-priced, 

imported goods81. As a consequence, non-boom exports and activities lose market share, 

profits and growth opportunities. When the “Dutch disease” occurs in extractive economies 

which are specialized in natural resources, non-extractive economic activities are discouraged, 

thus triggering ongoing resource exploitation instead of economic development. These 

symptoms are often referred to as “natural resource curse” constituting the negative link 

between resource abundance and growth82. Bahar and Santos provided empirical evidence 

on such “curse” by presenting how resource “windfalls”, resulting in sharply increasing 

resource exports, directly determine economic activities: countries with large exports of 

natural resources exhibit high levels of non-resource export concentration83. Since this 

correlation is particularly pervasive in developing countries, the findings support the theory 

of the “specialization trap”. Another study underlining the existence of such trap, draws upon 

the “premature de-industrialization”. Here, Rodrik documented a recent de-industrialization 

trend in developing countries that is occurring at much lower levels of income compared to 

the experience of advanced, post-industrial economies84. While employment 

deindustrialization in Western countries was primarily triggered by technological progress, the 

observed “premature de-industrialization” in developing countries traces back to 

globalization and trade: As they opened up to trade, their manufacturing sectors were hit by 

a shock when exposed to the declining relative price trends originating from advanced 

economies. The consequence here described as “imported de-industrialization” coincides 

with the “specialization trap”: Manufacturing tends to experience relatively stronger 

productivity growth than production, thus producing countries keep being stuck in a position 

as resource-intensive, primary commodity suppliers with continuously deteriorating terms of 

trade. If this trend is accompanied by a resource boom that discourages any non-boom 

economic activity (“Dutch disease”), economies can hardly escape this trap-like situation. 

Summing up, all these concepts provide explanations and support the theory that 

under prevailing global trade conditions, enhancing resource extraction in economically less 

developed countries increases resource dependence instead of promoting innovation or 

sustainability. Intensification might thereby play a crucial role in two possible ways: On one 

hand, it might function as a stabilizing system feature. Boonstra and De Boer, who 

conceptualized social-ecological traps as processes producing both environmental 
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degradation and poverty, named strong path dependency as one of the main preconditions 

for the ‘‘structural persistence’’ of these traps85. Based on this, it should be scrutinized 

whether intensification might function as self-reinforcing mechanism that results in path 

dependency and lock-ins for land systems of “specialization-trapped” countries. On the other 

hand, intensification could also work as a “sliding reinforcer”86. Costanza introduced this term 

to describe actions that initially yield positive outcomes but start to produce progressively 

more negative outcomes, or small interventions that have a beneficial effect, while larger 

interventions of the same kind have a negative effect. This view emphasizes the argued trade-

offs of intensification induced commodity booms.  

All these considerations reveal that the outcome of intensifying interventions is shaped 

by a variety of contextual factors, often reflecting system behavior including feedback 

mechanisms, path dependency, and diverse interactions across multiple scales. Despite this 

complexity, contextual generalizations of causal mechanisms can help identifying critical 

conditions under which intensification triggers undesired rebound effects. For my analysis, 

the above-presented conceptual framing (Figure 1) serves as groundwork for a systemic 

perspective on causal pathways of intensification spillovers in the world’s TDF. 

3. Materials and methods 

To understand how intensification relates to deforestation in TDF, I combined the 

identification of causal mechanisms of intensification spillovers, with statistical investigation 

of the causal effects resulting from these mechanisms (Figure 2). Drawing on the previous 

chapter, I developed a conceptual framework to identify the causal pathways provoking 

different effects in land systems, before translating the established narratives into an explicit 

causal model and quantifying their effects by making use of a Bayesian multilevel analysis. 



 14 

 

Figure 2: Analytical approach. Drawing on theoretical and empirical knowledge, I derived testable 
rationales and translated them into a causal model. Informed by the established causal pathways, I 
compiled a multilevel dataset entailing environmental variables as well as social-ecological parameters and 
economic indicators. Finally, I quantified their corresponding effects by making use of a Bayesian multilevel 
model. 

3.1. Study region 

To define my study region, I followed previous work on TDF globally51,87,88 and used an 

inclusive TDF definition89. In detail, I focused an all forests and woodlands falling into two 

biomes according to the updated version of Olson, et al. categorization90,91: (1) tropical and 

subtropical dry broad-leaved forests, and (2) tropical and subtropical grasslands, savannas and 

shrublands. Accordingly, TDF regions are distributed through South and Central America, 

Africa, Southeast Asia, and Australia (Figure 3a), covering about 20% of the global terrestrial 

surface51. All of these ecosystems harbor large numbers of endemic species46,92, are major 

carbon storages, and provide important ecosystem services including their positive impact on 

climate, nutrient and water cycles93. Moreover, TDFs are culturally rich and have maintained 

livelihoods to human populations for millennia94. 

With more than 60% of the population in countries with TFD engaged in agriculture95, 

human activities have caused major transformations in these ecosystems. Especially in the 

last decades, many TDFs have experienced high and rising pressure from land-use change and 

overexploitation47,96,97. While in some regions, forests have been substantially reduced by 
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historical deforestation, such as India98 and Indochina99 (Figure 3e), many regions have only 

recently turned into global deforestation hotspots, such as Madagascar100 (Figure 3d), and the 

South American Chaco, Chiquitano97,101 (Figure 3b) and Cerrado102 (Figure 3c). Finally, there 

are regions currently undergoing an activation of deforestation frontiers, such as the African 

Miombo103,104 (Figure 3f). 

 

Figure 3: Global tropical dry forest regions and deforestation hotspots. A large proportion of global 
terrestrial surface is covered by TDF, distributed through South and Central America, Africa, Southeast Asia, 
and Australia (a). Rising human pressure has triggered considerable forest loss in the last two decades, 
especially in the deforestation hotspots in the South American Gran Chaco & Chiquitano (b), Cerrado & 
Caatinga (c), African Miombo and Mopane woodlands (f), Madagascar (d) and Indochina tropical dry forests 
(e). Data on forest cover and loss from Global Forest Watch96. 

Although it is widely agreed that TDF are under considerable threat50,51,105, and despite 

their high ecological, cultural, and provisioning value, TDF have been largely overlooked when 

it comes to research effort, government policies and public awareness49,51, and remain weakly 

protected47,99. Due to strong social-ecological differences among TDF regions in terms of land-

use history and dominant land-use practices106, governance schemes have often failed when 

designed as “one-size-fits-all” panaceas. Therefore, it is crucial to account for the diversity of 

agricultural actors and production systems50,106 or contextual land-use conditions95,107, to 
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adequately integrate underlying and distal drivers19,23,108, and to take into account system 

dynamics such as feedbacks, path-dependency and multiple interactions10. 

3.2. Rationales of intensification outcomes 

Based on the theoretical and empirical context of my study mapped in a conceptual 

framework, I derived five testable rationales. They establish causal pathways around 

potentially influential factors shaping the relationship of agricultural intensification and 

deforestation.  

1. Price elasticity. High price elasticity of excess demand is hypothesized to increase 

the risk of a local rebound effect. This depends mainly on crop type and market integration. 

For staple crops mostly consumed domestically, intensification enables reaching the needs 

with less lands while demand remains stable because surplus production has no outlets. Thus, 

low price elasticity makes agricultural intensification relieve pressure on forests. Inversely, in 

the case of non-staple crops produced for rapidly expanding global markets, efficiency gains 

are likely going to increase profitability and logically act as an incentive to expand the crop 

frontier.  

2. Land availability. Strong biophysical or institutional restrictions on land are 

expected to promote land sparing because, under productivity increases, scarcity of 

productive, accessible, or legally available land can encourage the abandonment of cultivation 

on less suitable or poorly accessible land. 

3. Policy. Protective land use policies prevent the expansion of agriculture into forest, 

usually relying on high governance quality. Yet, while strong environmental governance has 

shown to facilitate land sparing, conventional aspects of governance mostly incentivize the 

establishment of operational markets. Under such conditions, economic activity – including 

agriculture – tends to expand thus likely resulting in a higher risk of rebound effect. 

4. Land change actors. Differences in motivation, constraints and cultural background 

of land actors translate into different modes of agricultural management thus affecting the 

outcome of intensification. Indigenous or local community managed lands – presumed less 

subjected to the drive to increase profits – are hypothesized be less prone to rebound effects 

than privatized lands. Further, state-owned forested land seems to face a higher risk of 

deforestation because large scale actors have shown to avoid negotiations on land under 

patchy or uncertain tenure to reduce transaction costs. 
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5. Resource specialization. Structural patterns inherent in prevailing global trade 

conditions are hypothesized to affect intensification spillovers as manifestation of the 

“specialization trap”: Accordingly, enhancing primary sector productivity in economies 

specialized in natural resource extraction is likely going to foster resource dependence instead 

of promoting innovation or sustainability, especially when their positions in global supply 

chains and their respective role in the world economy makes them exposed to price trends 

originating from more advanced economies (“pre-mature deindustrialization”). Since 

intensification might function as a reinforcing element under this scenario, natural resource 

specialization combined with a low economic development stage is argued to increase the risk 

of rebound effect. 

3.3. Data sources and processing 

To operationalize my rationales and the underlying research questions, I assembled a 

multilevel dataset of 154,979 observations containing both country-level variables and pixel-

scaled information at a 3km-grid over the timespan of 2001-2020 which constitutes one 

timestep encompassing 20 years. My dataset comprised all pixels that are at least 10% 

covered by tropical dry forest in the year 2000 according to Global Forest Watch96, and was 

further reduced by systematically sampling every third grid cell in x- and y-direction to 

minimize effects of spatial autocorrelation. Although land sparing and rebound effects cannot 

only occur within the region that experiences intensification but also remotely12, I disregarded 

potential displacement to other countries and focused on spillovers within country borders. 

Since in the tropics, the largest share of new cropland areas comes at the expense of 

forests60,109,110, I addressed my research questions using forest loss as proxy for cropland 

expansion. So far, many studies have investigated cropland expansion by deploying data on 

harvested area for a specified sample of crops39,41,43,44 but such approach – although needed 

to investigate crop-specific responses – can neither account for interchanges among plants, 

nor can it capture spillovers between livestock and cropping systems. In contrast, my 

approach covered deforestation regardless of crop type, thus capturing land use change 

dynamics that do not manifest in crop-specific harvested area changes. The proportional 

forest loss variable (FL) comprised accumulated forest loss from 2001-2020 as percentage of 

forest cover in 2000 for each grid cell, which I derived from data on forest change from Global 

Forest Watch96 and aggregated to my target resolution of 3x3km2 grid cell (Table 1). 
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Intensification has been defined in different ways, often adding to confusion in 

discussing its impacts on land use20. I used yield increase as a measure of intensification 

representing the productivity of land measured by higher output per land unit. I retrieved key 

variables on yield and production statistics from the FAOSTAT database111. Despite limitations 

associated with this archive, it remains the only long-term, cross-country dataset for exploring 

such empirical question. Given the importance of understanding intensification outcomes, 

working with imperfect data seems warranted43. I operationalized agricultural intensification 

as country-level aggregated yield change (∆Y) over the period of 2000-2019 (Table 1). The 

applied procedure accounted for potential time lags, crop group specific differences in 

weights and anomalies in country-level trajectories (Appendix A). 

To investigate the varying impact of intensification of different crop types, I further 

stratified overall yield change into yield change of staple crops versus yield change of 

commodities/non-staple crops. Staple crops are defined as the world’s energetically most 

important food sources constituting paddy rice, maize, wheat, sugar beet, barley, potatoes, 

cassava, sorghum, sweet potatoes, groundnuts, millet, onions, oats, coconuts, sunflower 

seeds, fresh vegetables, bananas, plantains, and yams. The remaining non-staple crops are 

primarily grown to be sold on international markets, fed to animals, or have industrial 

applications, constituting among others palm oil, soybean, rapeseed, sugar cane, fruits, cocoa, 

coffee, tea, tobacco, rubber, and cotton. 

The presented approach relying on temporally aggregating both forest loss and yield 

change bears the risk to inadequately represent finer temporal dynamics and especially 

neglect the chronology of events. If both aggregated yield change and forest loss were 

attributable to short periods of only few years, and the forest loss event occurred earlier in 

time than the one causing yield change, my data structure would not allow accounting for this 

order, and thus risk to wrongly identify given forest loss as a follow of yield change. Yet, such 

potentially misleading chronology could be ruled out after having inspected country-level 

yield trajectories revealing that only four countries experienced significant stagnation and 

peak in yield change while the large majority displayed relatively steady yield increases over 

the entire study period (Appendix A). Furthermore, alternative approaches such as time series 

analyses including lags, or difference-in-difference-models based on constructing a timing of 

intervention and respective pre- and post-treatment trends were carefully considered but 

have not proven advantageous due to several pre-assumptions and simplifications that I 
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evaluated as more severe than the ones linked to temporal aggregation. Finally, to maximize 

robustness I performed checks to test whether different assumptions regarding time lags of 

intensification spillovers affected my results. Therefore, I calculated yield change in the 

periods 1981-2020 and 1991-2010 to check whether conditioning present forest loss on 

earlier yield change time spans would yield essentially different results compared to the 

analysis based on the original yield change variable in the study period (2000-2019).  

To quantitively represent the hypothesized conditioning factors on the relationship of 

intensification and deforestation, I derived the following variables (listed in Table 1): 

Price elasticity in rationale 1 is argued to be determined by crop type and market 

integration. Therefore, I calculated country-level mean share of non-staple crop production 

(nonStap) in the time period 2000-2019 from FAOSTAT database applying the same 

classification as noted above111. Similarly, I calculated production share of export (export) as 

country-level mean share of total agricultural export value from agricultural gross production 

value between 2000 and 2019. Agricultural re-exports resulting in export-share values >1 are 

dealt with by bounding all values to a maximum of 1.  

To describe agroecological suitability (suit) as first element of physical land availability 

described in rationale 2, I derived data from the Global Agro-Ecological Zones dataset from 

FAO and IIASA112 mapping summed, standardized agroclimatic potential for low-input, rainfed 

agriculture of the main crops and commodity crops globally (wheat, soy, maize and rice, 

cassava, banana, cocoa, coffee, tea, sugarcane, oil palm). To represent the second element, 

accessibility (access), I obtained grid-level information on travel time to the nearest city of 

population > 50,000 in 2015113. I reaggregated data on both agroecological suitability and 

accessibility to the study grid-cell resolution of 3 km. As third element affecting land 

availability, I received country-level proportion of terrestrial protected areas of total land area 

from the World Database on Protected Areas (WDPA)114.  

With respect to the varying effect of different governance aspects argued in rationale 3, 

I covered conventional dimensions of governance, combining three indicators developed by 

the World Bank (WGI), related to voice and accountability, rule of law, and control of 

corruption115. To capture the environmental dimensions of governance, I relied on the 

Environmental Performance Index (EPI) developed by the Yale Centre for Environmental Law 

and Policy which incorporates indicators over policy categories related to the effect of 

environmental degradation on ecosystems vitality116.  
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Table 1: Model variables and datasets used. 

Variable Description Scale Source 
    

    

Deforestation/outcome   
     

 Proportional forest loss 
(FL) 

accumulated FL from 2000-2020 as percentage of forest cover in 2000 
(F2000): 
 

𝐹𝐿 =
∑ 𝐹𝐿𝑡𝑡

𝐹2000
 𝑤𝑖𝑡ℎ 𝑡 = {2001; . . . ; 2020} 

3km 96 

     

     

Intensification/treatment   
     

 Yield change 
(∆Y) 
 
a) overall mean 
b) mean of staple crops 
c) mean of non-staple 

crops 

temporally aggregated ∆Y on country-level calculated in a three-step 
procedure: 

1. yearly crop group yield change ∆𝑌𝑡,𝑐 compared to the mean 
of the two previous years 

2. yearly yield change ∆𝑌𝑡  as mean of ∆𝑌𝑡,𝑐 weighted by 
harvested area in 2000 (𝐻𝐴𝑐) 

3. study-level yield change ∆Y as product of ∆𝑌𝑡 from 2000-
2019 

 

country 111 

     

Shaping factors/effect modifiers   
    

Rationale 1    
 Production share of export 

(export) 
Mean % of agriculture export value in agriculture gross production 
value (2000-2019) 

country 111 

 Production share of non-
staple crops 
(nonStap) 

Mean % of non-staple production in agriculture production (2000-
2019) 

country 111 

     

Rationale 2    
 Agroecological suitability 

(suit) 
Summed, standardized agroclimatic potential for low input, rainfed 
agriculture 

3km 112 

 Accessibility 
(access) 

Travel time to the nearest city of 50,000 3km 113 

 Proportion of protected 
areas 
(PA) 

Proportion of terrestrial protected areas (% of total land area) country 114 

     

Rationale 3    
 Conventional governance 

(WGI) 
Combined governance quality indicators developed by the World Bank country 115 

 Environmental governance 
(EPI) 

Environmental performance index country 116 

     

Rationale 4    
 Indigenous/community 

managed lands 
(IPL) 

Indigenous land management (binary) 3km 117 

     

Rationale 5    
 Susceptible regarding 

specialization trap 
(special) 

Combination of: 
- mean primary sector, value added 2000-2019 > 15 % of GDP 
- World bank income group = low/lower middle 
 

country 118,119 

     

Control variable for demand    
 Change in rural population 

density 
(popdens) 

Change in population density 2000-2020 in a buffer (moving window 
approach) around the grid cell 

3km 120 
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To examine the impact of different land actors following rationale 4, I constructed the 

presence of Indigenous or community managed lands (IPL) as a binary variable on grid-level 

based on the spatial dataset created by the authorship team of Garnett et al.117. The use of 

data on IPL always includes a socio-political notion that requires acknowledging that these 

boundaries describe prevailing power structures, while few of them are entirely undisputed 

and often in a state of permanent flux which makes them difficult to map117. Nonetheless, 

progressively identifying and considering IPL is essential to comply with the large global 

importance they hold for conservation117. 

Finally, regarding rationale 5 addressing the specialization trap, I described countries’ 

specialization in primary sector and their respective position in supply chains by obtaining GDP 

share of agriculture, forestry, and fishing in terms of added value from the World Bank as 

mean from 2000-2019118. Combined with the income group classification from the World 

Bank119, I constructed a binary variable indicating whether a country is especially susceptible 

to the dynamics of the specialization trap (special) which is true if both its primary sector 

constitutes more than 15% of national GDP and it is categorized as low-, or lower-middle 

income economy. 

Besides the above noted variables associated with my rationales, I controlled for 

changes in demand by including change in rural population density (popdens) in the study 

period, based on the assumption that rural population is most dependent on domestic 

agriculture110. Therefore, I derived grid level population density data for 2000 and 2020 from 

the Gridded Population of the World (GPW) data product from Socioeconomic Data and 

Applications Center (SEDAC)120, calculated mean population density in a 9km2-buffer around 

the given grid cell with a moving window approach for both timesteps and computed the 

percentage change. 

All data operations and manipulations were carried out in the statistical programming 

environment R121 with many applications of the R package tidyverse122. 

3.4. Establishing causality 

With the objective of linking the established rationales to their corresponding effects, and 

making these mechanisms statistically analyzable, I applied the perspective of causal inference. 

Generally, such approach describes the statistical process of concluding that an observed 

association is due to causation, not mere correlation123. When built upon observational data, 
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as in my case, it relies on the premise that those can be viewed as a conditionally randomized 

experiment124. However, many social-ecological processes including land-use change take 

place in settings where random interventions hardly occur and unobservable variables may 

lead to bias123,125. Thus, drawing valid causal inferences on the basis of social-ecological 

observational data is not a mechanistic procedure but requires acknowledging that it involves 

adjusting steps based on domain knowledge, and implies very strong assumptions126. In order 

to facilitate awareness of implied assumptions in my model, I made use of directed acyclic 

graphs (DAGs)127. These graphical causal diagrams are a powerful tool for transparently 

communicating assumptions, theories and causal claims made in the context of social-

ecological modeling. 

 

Figure 4: Directed acyclic graph (DAG). Arrows connecting the variables represent causal assumptions 
about correlations derived from case studies and theory. 

The DAG in Figure 4 visually represents the causal assumptions I have made to infer 

causal effects of agricultural intensification on deforestation. The arrows in the graph display 

association between the nodes (variables) and can be used to guide model building. Applying 

the framework of causal inference, I conceptualized intensification as treatment and 

deforestation as outcome. My rationales on shaping contextual factors enter the model as 

effect modifiers, meaning that they potentially alter the magnitude or direction of the average 

causal effect of treatment (intensification) on the outcome (deforestation)124. Generally, a 

distinction can be made between causal effect modifiers and surrogate ones. While the 

former is assumed to actually play a causal role, the latter refers to variables that are either 
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correlated with unidentified variables, or proxies for not quantifiable causal effect modifiers124. 

Hence, I assume an association between the listed surrogate effect modifiers and causal effect 

modifiers, thus substituting the latter with the former. Furthermore, population density 

appears as yield-change unrelated yet potentially important determinant for forest loss. 

In order to consistently identify and quantify causal effects, the condition of ex-

changeability must be met which is fulfilled in the case of randomized assignment of 

treatment124. Yet, in observational contexts, where fully randomized experimental setups do 

not exist, estimates can be biased by confounders, variables associated with both treatment 

and outcome124. In my analysis, accessibility and agro-ecological suitability are likely to affect 

both intensification and deforestation. The resulting open backdoor path between treatment 

and outcome creates an unobserved additional source of association, thus leading to 

confounding bias and requiring balancing adjustment123,125. An approach that has gained 

widespread popularity for balancing dissimilar treatment exposure with respect to baseline 

covariates is the propensity score proposed by Rosenbaum and Rubin128. It is defined as the 

probability of treatment, given the observed covariates. Propensity score methods first 

estimate propensity scores for each observation and then use the scores to statistically 

balance treatment groups and thereby remove the association between covariates and 

treatment129,130. Rosenbaum and Rubin128 developed the propensity score for balancing 

binary treatment, but literature has extended these methods to the cases of continuous 

treatments using the generalized propensity score (GPS) defined by Hirano and Imbens131 

(Appendix B). I applied this procedure to statistically balance across the range of yield change 

and adjust for dissimilar exposure regarding accessibility and agro-ecological suitability, thus 

removing the association between the covariates (accessibility, agro-ecological suitability) and 

treatment (intensification). I used the R package WeighIt132 to calculate propensity score 

weights as well as checking the resulting balance in my data. 

3.5. Bayesian multilevel modeling 

I applied a Bayesian multilevel modeling framework to statistically investigate causal 

mechanisms of variables representing the established rationales by estimating their 

corresponding average global effects as well as continent-specific variations. 

Multilevel models offer great flexibility for modeling statistical phenomena that occur 

on different levels133. This is achieved by fitting models that include both constant and varying 
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effects. Such varying-effects strategy is especially useful when handling complex dependency 

structures in the data133, such as continents’ different baseline conditions regarding history, 

drivers and actors of land use change, and the resulting variation in the intensification-

deforestation patterns. By specifying a multilevel/varying-effects model with continents as 

model levels, I can account for the fact that observations from the same continent are not 

independent. I enable the model to both capture and explore variance among continents 

while still acknowledging the similarities of global land system dynamics in global TDF. By 

partitioning the total variance into variation due to the groups and to the individual, I gain 

insights about the generalizability of the findings134. Apart from these contextual benefits, 

multilevel models offer natural solutions to some sampling issues: Since they can adaptively 

pool information among parameters, they usually achieve better estimates and are superior 

in negotiating the trade-off between underfitting and overfitting134. Especially when there are 

imbalances in sampling of some clusters, multilevel models automatically cope with differing 

uncertainty across these clusters which prevents over-sampled clusters from inappropriately 

dominating inference134. 

I chose the Bayesian approach because it involves two advantageous features beyond 

classical statistics that respond well to the challenges associated with analyzing causal effects 

in complex, structured data. First, uncertainty can propagate throughout the modeling 

process so that predictions for future outcomes account for both uncertainty in the model 

parameters and predictive uncertainty, and second, a priori knowledge can be incorporated 

in data analysis via prior distributions135 (Appendix C). 

In my study, the process of Bayesian analysis involved four major steps, beginning with 

setting up a probability model for all the entities at hand and specifying prior distributions (1), 

then drawing from the posterior distributions using Markov Chain Monte Carlo (MCMC) for 

different model specifications (2), evaluating how well the models fit the data and revise the 

models by optimizing predictor selection (3), and finally drawing from the posterior (predictive) 

distributions in order to analyze how predictors affect the outcome (4). 

In the first step, I defined the probability model that takes the form of a likelihood 

distribution for the outcome conditional on prior distributions for the unknowns. Since the 

response variable forest loss (FL) is continuously distributed between 0 and 1 with an inflation 

at the outcome zero, a zero-inflated Beta distribution is appropriate to match these observed 

data features to model assumptions. Hence, I specified a mixed model to predict 𝐹𝐿 based on 
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a zero-inflated Beta distribution that characterizes bounded quantities in the closed 

[0,1[ interval, and has two components: a beta distribution for responses in the 

closed ]0,1[ interval (Appendix D), and a Bernoulli distribution for the binary {0} responses. 

In mathematical form, I specified the following mixed varying-effects model, after 

having transformed predictors following recommendations in Gelman, Hill and Vehtari 

2020135 (Appendix E). 

 

𝐹𝐿𝑖 ~ 𝑍𝐼𝐵𝑒𝑡𝑎(𝑝𝑖 , 𝜇𝑖 , 𝜙𝑖) (I) 

𝒍𝒐𝒈𝒊𝒕(𝒑𝒊) = 𝜶𝒑 + 𝜷𝒂𝒄𝒄𝒂𝒄𝒄𝒆𝒔𝒔𝒊 (II) 

𝒍𝒐𝒈𝒊𝒕(𝝁𝒊) = 𝜶𝝁,𝒄𝒐𝒏𝒕[𝒊] + 𝜷𝑷𝑫,𝒄𝒐𝒏𝒕[𝒊]𝒑𝒐𝒑𝒅𝒆𝒏𝒔𝒊 + ∆𝒀𝒊

∗ (𝜷∆𝒀𝝁,𝒄𝒐𝒏𝒕[𝒊] + 𝜷𝒆𝒙𝒑,𝒄𝒐𝒏𝒕[𝒊]𝒆𝒙𝒑𝒐𝒓𝒕[𝒊] + 𝜷𝒏𝑺𝒕,𝒄𝒐𝒏𝒕[𝒊]𝒏𝒐𝒏𝑺𝒕𝒂𝒑[𝒊]

+ 𝜷𝒔𝒖𝒊𝒕,𝒄𝒐𝒏𝒕[𝒊]𝒔𝒖𝒊𝒕[𝒊] + 𝜷𝑷𝑨,𝒄𝒐𝒏𝒕[𝒊]𝑷𝑨[𝒊] + 𝜷𝑾𝑮𝑰,𝒄𝒐𝒏𝒕[𝒊]𝑾𝑮𝑰[𝒊]

+ 𝜷𝑬𝑷𝑰,𝒄𝒐𝒏𝒕[𝒊]𝑬𝑷𝑰[𝒊] + 𝜷𝑰𝑷𝑳,𝒄𝒐𝒏𝒕[𝒊]𝑰𝑷𝑳[𝒊]

+ 𝜷𝒔𝒑𝒆𝒄,𝒄𝒐𝒏𝒕[𝒊]𝒔𝒑𝒆𝒄𝒊𝒂𝒍[𝒊]) 

(III) 

𝐥𝐨𝐠(𝝓𝒊) = 𝜶𝝓 + 𝜷∆𝒀𝝓∆𝒀𝒊 (IV) 

𝛼𝑝  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0,0.1) (V) 

𝛼𝜇,𝑐𝑜𝑛𝑡[𝑖] ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝛼) (VI) 

𝛼𝜙 ~ 𝑙𝑜𝑔𝑁(0,1) (VII) 

𝛽𝑎𝑐𝑐 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0,0.1) (VIII) 

𝛽…,𝑐𝑜𝑛𝑡[𝑖] ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝛽) (IX) 

𝜎𝛼, 𝜎𝛽 ~ 𝐸𝑥𝑝(10) (X) 

 
I defined the use of a zero-inflated Beta distribution to model proportional forest loss (𝐹𝐿𝑖) 

using a parameterization with mean 𝜇𝑖 and precision parameter 𝜙𝑖 for non-zero forest loss 

predicted by the beta distribution, and probability 𝑝𝑖  for zero-responses predicted by the 

Bernoulli distribution (line I). As 𝜇𝑖  and 𝑝𝑖  must be (0, 1), I used a logit link function to 

transform the results of the linear models for 𝜇𝑖  and 𝑝𝑖  to the (0, 1) interval (line II, III). 

Similarly, I used a log link function to ensure that 𝜙𝑖  is positive (line IV). To estimate 𝑝𝑖 , I 

defined a linear model with a global intercept 𝛼𝑝  and slope 𝛽𝑎𝑐𝑐  for accessibility (𝑎𝑐𝑐𝑒𝑠𝑠) 

(line II). Including accessibility as effect parameter in the formula was based on the 

expectation that remotely located, poorly accessible data points have a higher probability of 

the outcome of zero forest loss, independent of effects of intensification. To estimate the 

mean magnitude of forest loss (𝜇𝑖), I specified a multilevel model (line III). Here, 𝜇𝑖 is predicted 

by population density (𝑝𝑜𝑝𝑑𝑒𝑛𝑠), and yield change (∆𝑌) in interaction with the shaping factors 
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production share of export (𝑒𝑥𝑝𝑜𝑟𝑡), production share of non-staple crops (𝑛𝑜𝑛𝑆𝑡𝑎𝑝), agro-

ecological suitability (𝑠𝑢𝑖𝑡 ), proportion of terrestrial protected areas ( 𝑃𝐴 ), conventional 

governance (𝑊𝐺𝐼), environmental governance (𝐸𝑃𝐼), Indigenous land management (𝐼𝑃𝐿), 

and susceptibility regarding the specialization trap (𝑠𝑝𝑒𝑐𝑖𝑎𝑙). All parameter coefficients were 

modeled to vary across continents, thus exploring global average patterns as well as variance 

among continents, and providing insights about generalizability. I defined a linear model to 

approximate 𝜙𝑖 with a global intercept 𝛼𝜙 and slope 𝛽∆𝑌𝜙 for ∆𝑌(line IV). The argumentation 

of predicting the dispersion of 𝐹𝐿𝑝𝑟𝑜𝑝  by ∆𝑌  assumes that intensification potentially 

facilitates both land sparing and rebound effects, thus increasing the dispersion of the 

observed response in forest loss. 

Finally, I chose prior distributions for the unknown parameter coefficients (lines V-X). 

I optimized prior settings in an iterative process of performing prior predictive checks i.e., 

predicting the data only based on the chosen priors (Appendix F), and subsequently adjusting 

those prior distributions based on information obtained from sampling diagnostics and 

predictive checks. In this way, I derived informed priors that are on one hand regulatory 

enough to facilitate model convergence, and on the other hand result in plausible predictive 

simulations while not restricting the outcome distribution in a biasing way and predetermine 

model results (Appendix F). Consequentially, priors for 𝛼𝑝 , and 𝛽𝑎𝑐𝑐  were chosen as normally 

distributed centered on 0 resulting in regularizing Gaussian priors in the (0,1) interval once 

transformed to the outcome scale by the corresponding link function. For 𝜇𝑖, each continent 

was given a unique intercept (𝛼𝜇,𝑐𝑜𝑛𝑡[𝑖]) issued from a Gaussian distribution centered on 0, 

meaning that there might be different mean scores for each continent. The prior intercept for 

𝜙𝑖 was defined by a log-normal distribution with mean 0 and standard deviation 1 which limits 

values to the positive response space, thus avoiding phi values <1 in the outcome scale after 

log-transformation which prevents U-shaped beta distributions. Varying effect parameters 

( 𝛽…,𝑐𝑜𝑛𝑡[𝑖] ) were assigned a weakly informative Gaussian prior centered on 0. Both the 

distribution of varying intercepts and slopes had an Exp(10)-distributed prior standard 

deviation (𝜎𝛼, 𝜎𝛽), thus restricting the range of possible values to positive ones. Internally, the 

covariance i.e., correlation between varying intercepts and slopes was modeled by a 

multivariate normal distribution with an uninformative correlation prior of 𝐿𝐾𝐽𝑐𝑜𝑟𝑟(2) 

representing flat covariance assumptions134. 
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As a second step, I drew from the posterior distribution using MCMC sampling to 

explore model estimations. Four sampling chains ran for 2000 iterations with a warm-up 

period of 1000 iterations for each model, thereby yielding 4000 samples for each parameter 

coefficient. I ran several competing models with and without a multilevel structure and 

including different sets of highly correlated predictor variables (export, nonStap, PA, WGI, EPI). 

Further, I differentiated among the different categories of calculated ∆Y (overall mean, within 

staple crops and within non-staple crops). Finally, I executed two additional model runs based 

on ∆Y of earlier time periods to check robustness of my results, as described above. 

In a third step, I evaluated model fit based on posterior predictive checks i.e., 

predicting new hypothetical data sampled from the posterior predictive distribution and 

comparing it to a random draw of observed data. For purposes of comparing predictor 

selections of competing models, I determined out-of-sample predictive accuracy using leave-

one-out expected log predictive density (LOO-ELPD) as described by Vehtari et al. 2017136. In 

essence, the LOO-ELPD gives a relative measure of predictive performance when the model is 

confronted with new data. Using the R-package loo137 to efficiently compute leave-one-out 

cross-validation including Pareto smoothed importance sampling, I compared estimates of 

predictive accuracy and their standard errors among models. 

In the final step, I analyzed posterior distributions. I plotted conditional effects of the 

parameter coefficients of interest by setting all model predictors, besides the one of interest, 

to their mean value or reference category to demonstrate the effect for the average sample. 

For the binary predictors, I calculated and visualized contrasts between the two levels as a 

measure of evidence of the given effects. Eventually, I modeled ∆Y-related forest loss for 

another time step of 20 years under a hypothetical future yield change scenario that is based 

on extrapolating past 10 years’ yield change patterns. Disregarding change in rural population 

density, and leaving all other conditions unchanged, I calculated the mean posterior estimate 

as well as the posterior standard error comprising both parameter uncertainty and predictive 

uncertainty. I drew from the respective posterior predictive distribution and mapped the 

outcome spatially to explore deforestation threat of intensification spillovers in global TDF. I 

performed all modeling and estimation through the brms package138 in R121 as an interface to 

the Bayesian inference engine Stan139.  
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4. Results 

4.1. Predictive performance 

For all model runs, sampling diagnostics (R-hat, effective sampling size) and trace plots related 

to MCMC sampling indicated high sampling efficiency, good mixing, stationarity, and 

convergence of the independent model chains, thus signaling reliability of the modeling 

process (Appendix G). 

Table 2: Final model specifications. Model comparison was based on the performance diagnostic LOO-ELPD 
providing information about predictive accuracy of competing models.  

Model part Baseline Final model 
  

   

Predictor selection of ∆Y effect modifiers nonStap, export, suit, PA, EPI, WGI, 
IPL, special 

nonStap, suit, IPL, special 

   

   

Model structure Varying effects, fixed effects Varying effects 
   

 

Model comparison based on LOO-ELPD revealed one best performing model including 

access, popdens, and ∆Y in interaction with suit, nonStap, IPL and special as predictors (Table 

2). The remaining ∆Y-effect modifiers were not included in the final model because they added 

more complexity than explanatory power (export, EPI, WGI), or were estimated inconsistently 

across models (PA). Regarding model structure, models allowing continent-level varying 

effects clearly outperformed the ones without multilevel structure (Table 2). 

The resulting final model was able to reproduce the observed data well, as 

demonstrated by posterior predictive checks (Appendix F). Finally, robustness checks 

confirmed constancy of the modeled effects (Appendix H): ∆Y effects estimated by 

conditioning on earlier periods were consistent with modeled effects in the original study time, 

thus strengthening the assumption that the temporal design of my analysis does not miss 

significant time lag effects potentially undermining the results. 

4.2. Posterior effect estimates 

Deforestation was widespread in the world’s TDF between 2000 and 2020, with an average of 

8.1% proportional forest loss (hereafter: forest loss). By design, the specified mixed model 

comprised two parts to predict forest loss: first, a Bernoulli distribution for the binary zero 
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forest loss responses, and second, a Beta model for the distribution of non-zero forest loss. 

Since both model parts had restricted outcome ranges, I used link functions to map the result 

of the linear model to the appropriate scales. In the following, all parameters are re-

transformed to the probability scale, to make the results more intuitive to interpret (see 

Appendix I for untransformed values). 

The first model component estimated a global mean zero-inflation probability of 0.086 

(standard error (SE) 0.001). Travel time to nearest city (access) had a positive effect on the 

zero-inflation probability (mean 0.61; SE 0.002) (Figure 5a), translating into a negative effect 

on forest loss (Figure 5b). Effect of access on forest loss was not constant over the parameter 

space but most pronounced in the middle value range. 

 

Figure 5: Conditional effects on probability of zero forest loss and forest loss dispersion. Curves show the 
mean effect and the 95% credible interval of the posterior distribution for the average sample. Accessibility 
operationalized as travel time to nearest city > 50,000 is given in units of standard deviation. 

The second component of the model estimated ∆Y effect on forest loss by the Beta 

parameters dispersion (phi) and mean magnitude (mu). ∆Y had a negative effect on the 

dispersion (mean -0.51, SE 0.008) (Figure 5c) translating into a widening effect on the response 

of the Beta distribution. Hence, an increase in ∆Y was associated with higher variation of 

responding forest loss. 

Posterior ∆Y effect on the mean magnitude of forest loss (hereafter: effect on forest 

loss) was positive. Globally on average, a 100% increase in yield was associated with a 3.8% 

increase in forest loss. The multilevel model structure enabled continent-level variations: 

While the effect was close to the global mean in South America, magnitude was higher in Asia 

and lower in Africa (Table 3). For Australia, ∆Y-related continent-level parameter coefficients 

are not regarded in the further analysis, because they were associated with too high levels of 

uncertainty (Figure 6). The modeled global effect of rural population density change – 
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assumed to represent changes in agricultural demand – was not meaningful (Table 3). The 

only significant estimate is the posterior popdens effect for Africa (mean -0.014, SE 0.008).  

Table 3: Global mean and continent level effect coefficients with posterior mean as measure of central 
tendency, and standard error as measure of variability. Values for the global parameters are taken from the 
global model without varying effects, the remaining continent-level specifications are taken from the final 
(multilevel) model. 

Parameter 
coefficient 

Global Continent-level deviation  

 Africa Asia South America 
    

     

popdens (𝛽𝑃𝐷,𝑐𝑜𝑛𝑡[𝑖]) -0.003;  SE 0.004 -0.014;  SE 0.008 -0.017;  SE 0.023 0.001;  SE 0.009 

∆Y (𝛽∆𝑌𝜇,𝑐𝑜𝑛𝑡[𝑖]) 0.038;  SE 0.013 0.017;  SE 0.003 0.071;  SE 0.052 0.033;  SE 0.020 

∆Y:nonStap (𝛽𝑛𝑆𝑡,𝑐𝑜𝑛𝑡[𝑖]) 0.43;  SE 0.007 0.011;  SE 0.093 -0.27;  SE 0.098 0.22;  SE 0.096 

∆Y:suit (𝛽𝑠𝑢𝑖𝑡,𝑐𝑜𝑛𝑡[𝑖]) 0.055;  SE 0.004 0.013;  SE 0.009 0.004;  SE 0.097 0.26;  SE 0.008 

∆Y:IPL (𝛽𝐼𝑃𝐿,𝑐𝑜𝑛𝑡[𝑖]) -0.054;  SE 0.011 -0.009;  SE 0.014 -0.12;  SE 0.10 -0.54;  SE 0.025 

∆Y:special (𝛽𝑠𝑝𝑒𝑐,𝑐𝑜𝑛𝑡[𝑖]) 0.14;  SE 0.29 0.013;  SE 0.049 -0.029;  SE 0.060 -0.001;  SE 0.065 
     

 

Given the posterior distributions of the estimated ∆Y-interaction terms, effect modifiers 

nonStap, suit, IPL and special considerably affected the relationship of ∆Y and forest loss, yet 

with remarkable differences among continents 

(Figure 7). In both Africa and South America, share 

of non-staple crops had an amplifying effect on the 

positive correlation of ∆Y and forest loss. Whereas 

the effect of nonStap was not significant in Africa 

(Table 3), it was of high and meaningful magnitude 

in South America, where low values of nonStap 

even reversed the positive effect of ∆Y on forest 

loss. Hence, under conditions of low share of non-

staple crop production, ∆Y in South America was 

associated with decreasing forest loss. Inversely, 

high share of non-staple crop production amplified 

the effect of ∆Y resulting in high levels of forest loss. 

Results were markedly different in Asia where 

nonStap had a reverse, negative interaction with 

∆Y regarding forest loss. Agro-ecological suitability 

had a reinforcing effect on the ∆Y-forest loss 

correlation in all continents. Highest magnitude 

Figure 6: Continent-level conditional ∆Y 
effect. Curves show the mean effect and 95% 
credible interval of the posterior distribution 
for the average sample. Black marks along the 
x-axis visualize the distribution of ∆Y values 
that the predictions were based on. 
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was obtained in South America where high levels of suitability significantly intensified the 

effect of ∆Y while low values practically offset any ∆Y effect. In Africa, effect of suit was small 

but significant, and in Asia, magnitude of the posterior standard error exceeded the posterior 

mean effect indicating high uncertainty. The posterior effect of Indigenous/community land 

management depended on the continent. While the presence of IPL did not significantly affect 

∆Y effect in Africa and Asia, it reversed the effect of ∆Y in South America. Here, the 

combination of yield increase and Indigenous/community land management was even 

associated with decreasing forest loss. Finally, countries’ attribution as especially prone to the 

specialization trap did not affect the correlation of ∆Y and forest loss. 

 

Figure 7: Conditional effects of yield change interactions on continent level. Curves show the mean effect 
and 95% credible interval of the posterior distribution for the average sample. Green curves are identical for 
every continent column. 

Stratifying the analysis for specific crop groups yielded similar results regarding ∆Y-

effect of staple crops: ∆Y was positively correlated with forest loss but of smaller magnitude 

than the estimated effect of mean ∆Y (mean 0.037; SE 0.01). Effect modifiers caused 
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qualitatively similar outcomes (Appendix J). In contrast, ∆Y effect estimates of non-staple 

crops were not significant (mean -0.012; SE 0.08). Still, some significant results were obtained 

regarding modifying effects of IPL and special. Posterior contrasts between ∆Y effect with and 

without IPL indicated that Indigenous/community land management alleviated ∆Y effect on 

forest loss in Asia and South America under every ∆Y setting, and for non-staple crops in Africa 

(Figure 8). 

 

Figure 8: Posterior contrasts. The curves visualize the posterior expected difference of the effects of IPL and 
special. Large parts of the distribution different from 0 indicate that the effect is meaningful. 

The estimated ∆Y-effect difference regarding susceptibility to the specialization trap 

was not evident for mean and staple-crops but did suggest an impact when conditioning forest 

loss on non-staple crops’ ∆Y. While in Africa and South America, non-staple crops’ ∆Y effect 

on forest loss was estimated lower in countries classified as resource-specialized, ∆Y effect 

was amplified in those Asian countries (Figure 8).  

Finally, mapping model predictions of ∆Y-associated forest loss for the next 20 years 

under extrapolated ∆Y patterns revealed varying deforestation threat from intensification 

spillovers in global TDF (Figure 9). Although proportional forest loss predictions mainly 

reflected country-level ∆Y-baseline differences (with partly extremely high levels of 

extrapolated ∆Y e.g., 13.7 for Zimbabwe, 5.8 for Brazil), mapped outcomes gave an 

informative picture of continent-level effect variation (Figure 9a). In South America and Asia, 

input ∆Y values translated into particularly high forest loss, while modeled loss was 

comparably lower in Africa.  
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Figure 9: Modeled forest loss from intensification spillovers based on continuing yield change patterns. 
Predictions draw upon a hypothetical scenario of extrapolating past 10 years’ yield change 20 years into the 
future. The effect of population density was disregarded, and all other model parameters (nonStap, suit, IPL, 
special, accessibility) remained unchanged. Proportional forest loss and certainty represent the mean 
posterior estimate and the posterior standard error (comprising both parameter uncertainty and predictive 
uncertainty) (a). Forest loss in km2 was calculated by multiplying the modeled proportional forest loss per 
grid cell by forest cover in 2020 (b). Insets show zoom-in to deforestation hotspots in the South American 
Gran Chaco & Chiquitano (c), Cerrado & Caatinga (d), African Miombo and Mopane woodlands (e), 
Madagascar (f) and Indochina tropical dry forests (g). 

Influences of effect modifiers manifesting at finer spatial scales (IPL, suit, and access) led to 

pronounced regional differences. This was especially notable in large countries such as Brazil 

and Argentina where modeled forest loss covered wide value ranges despite equal continent-, 
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and country-level baseline conditions (Figure 9a). There was no correlation of uncertainty and 

modeled forest loss magnitude but especially in South American and Southeast Asian 

deforestation hotspots, a considerable amount of grid cells exhibited both high modeled 

forest loss and high model certainty (Figure 9a). In India and Australia, predictions were 

generally more uncertain (Figure 9a). Forest loss predictions in km2 based on present forest 

cover in 2020 showed high overall dynamics (Figure 9b). Especially in deforestation hotspot 

regions in South America and Southeast Asia, forest loss was predicted to stay high, yet with 

fine-scale differences tracing back to both variation in present forest cover and fine-scale 

effect modifiers (Figure 9c,d,f). In contrast, modeled forest loss was lower in Madagascar and 

large parts of African Miombo woodlands (Figure 9e,g). 

5. Discussion 

Spillovers of agricultural intensification are divers and complex, but my results imply that 

overall, intensification fails to spare land in the world’s TDF. Over the study period, higher 

yields have reinforced rather than reduced forest loss, thus supporting the existence of a 

rebound effect. At the same time, my results underline the diversity of intensification 

outcomes as yield change was positively correlated with dispersion of forest loss. Hence, land 

sparing or rebound effect is not an explicit “either-or” choice but is highly context dependent. 

In my analysis, I identified economic, agroecological, and sociocultural factors together with 

continent-level baseline conditions that impact land system dynamics and diversify 

intensification spillovers. 

5.1. Conditioning factors of intensification spillovers 

The dominant influence of market opportunities in commercialized agriculture hampers 

land sparing 

To scrutinize the effect of market dynamics and price elasticity on the outcomes of 

intensification, I included share of non-staple crops in the model as a measure of high 

agricultural profitability and international market integration. In line with many 

studies16,24,25,31–34,39,44,63,64, my results demonstrate that globally, under high shares of non-

staple/commodity crop production, intensification reinforces deforestation instead of 

promoting land sparing. These findings add to the general consensus that commercialized 
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commodity agriculture producing for international markets is the major driver of cropland 

expansion58,107,140. Since global integration of commodity markets through trade has 

decoupled demand from local consumption limits140, efficiency gains directly increase returns 

to land. Land use expansion is especially responsive to commodity prices20 so that high 

profitability of commodity cultivation logically acts as an incentive to expand the crop frontier 

under increased productivity.  

The effect of market dynamics and price elasticity varied by continent. Share of non-

staple crop production most markedly increased risk of rebound effect in South America. This 

result reflects the wave of large-scale, industrialized agricultural expansion that has occurred 

in South American dry forest regions and triggered the most rapid rates of deforestation since 

200095. Today, agricultural frontiers in South American TDF are increasingly driven by 

capitalized corporate commodity farming, especially in the Dry Chaco141,142, the Chiquitano 

forests101, or Venezuelan Llanos69. Usually, these highly capitalized, well-organized farmers 

operate with little direct government intervention142 – a facilitating condition for rebound 

effects that can turn the spread of large-scale, highly capitalized commodity farms into an 

escalating driving force of contemporary deforestation frontiers. 

In Africa, the effect of non-staple crop production shares was smaller und uncertain 

which is not surprising, given subsistence or smallholder land use is more widespread in Africa 

than commodity farming95,104,143. Accordingly, African deforestation frontiers are mostly 

associated with conditions typical for smallholder regions i.e., high prevalence of shifting 

agriculture and small field sizes, and thus less responsive to incentives from global commodity 

markets107. Yet, recent events such as emerging large-scale plantations and increasing 

industrial operations in the Miombo forests suggest this pattern may be changing26,104, and 

pressure on forests induced by international trade is becoming more prevalent107. Moreover, 

expanding African frontiers indicate strong similarities to South American frontiers regarding 

environmental, institutional, and other contextual conditions and might be further 

accelerated by recently documented knowledge transfer, cooperation, and public and private 

sector linkages between the two continents’ TDF regions103. The increasing influence of 

distant markets in Africa, manifesting in both expanding commodity farming for export and 

intensification from increasing foreign investments104, is an alarming trend that might trigger 

strong rebound effects and resulting deforestation. 
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In Asia, model results, though associated with high uncertainty, contradicted rationale 

1: In contrast to the other regions and the global average, high levels of production share of 

non-staple crops reduced intensification-related forest loss. This is surprising given Asian TDF 

faces similarly high threats from rapidly expanding commodity frontiers as South America, and 

encompasses several commodity frontier hotspots such as Indochina TDF and Southern 

Vietnam lowland dry forests96,99,144. These unexpected results might be due to the applied 

distinction of staple crops and non-staple crops. While major agricultural export in Asia indeed 

traces back to “classical” non-staple/commodity crops such as palm oil, rubber and 

coffee107,145, also rice is strongly associated with international market destinations145. 

However, in my study, rice was classified as staple-crop, since it is one of the most important 

food crops with more than 80% of the world's rice produced and consumed by small-scale 

farmers146. This discrepancy might confound model results of the effect of production share 

of non-staple crops in Asia. 

Given commercialized commodity production crucially shapes the outcomes of 

intensifying practices, it might appear counterintuitive that the model obtained the same 

results when conditioning on intensification only within staple crops. Still, findings are 

plausible because Ewers et al. documented how land sparing effects of staple crops enabled 

by risen yields were counteracted and partly canceled by a tendency of increasing cropland 

areas for non-staple crops, arguably because intensification frees up labor, capital or land for 

other crops39. 

Today, smallholders producing food crops for households or local markets have been 

more and more supplemented and replaced by industrialized agribusinesses107. Even the 

remotest areas can be integrated in global markets, and agricultural frontiers are mainly 

driven by the expansion of large-scale highly capitalized farming targeted at exporting 

agricultural commodities5,58,142. Although in the last decades, commodity frontier dynamics 

played a more important role in driving deforestation in the wet tropics95, a geographic shift 

away from Brazilian rainforests towards tropical forests elsewhere was recently observable147.  

Clearly, this trend weakens the fundamental assumption of the Borlaug hypothesis of 

land sparing relying on inelastic demand of agricultural products. Given staple production for 

closed local markets is increasingly replaced by commodity production for globalized markets, 

above-described findings pose a major challenge to achieve land sparing under current trends 

of global agriculture. 
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Agroecological or accessibility constraints lower the risk of rebound effect in the concerned 

areas  

In support of rationale 2, my results suggest that land sparing is more likely under 

conditions of restricted land availability determined by agroecological suitability and 

accessibility. Low suitability had a moderating effect on rebound effect-induced forest loss 

which is consistent with case studies observing how intensifying technologies in productive 

lowlands are likely to discourage forest clearing in the less productive uplands35–37. Provided 

that intensification in lowlands satisfies demand for food-stuffs, abandonment of less suitable 

cultivation in uplands can be motivated by more labor-intensive technologies attracting labor 

away from the forest margins35,36, or by declining populations in uplands107.  

Furthermore, my results suggest that remotely located areas face lower risk of 

rebound effect. This finding highlights the importance of neighborhood effects on agricultural 

dynamics and adds to the theory of agglomeration economies arguing that the likelihood of 

an area being converted to agriculture is strongly linked to the socioeconomic conditions of a 

location’s surrounding28. In the South American Dry Chaco, land clearing dynamics have been 

crucially associated to the proximity to already cleared areas, and especially systems oriented 

to the production of international commodities have shown to attract investment to places 

near to already developed areas148. Given agricultural intensification increases profitability 

and incentives to invest in agricultural expansion thus spurring the growth of supply chain 

infrastructure28, these neighborhood effects of agglomeration economies can trigger strong 

rebound effects. 

However, while suitability and accessibility constraints have shown to decrease the risk 

of intensification-induced forest loss for an individual location, my results do not provide 

insights about their impact on broad scale land dynamics. An alternative interpretation could 

be that these fine-scale features determine only the spatial distribution of forest loss without 

interfering in broad scale drivers of land use change149. 

Finally, although limited accessibility in the tropics has effectively restricted 

agricultural expansion in the past and thereby facilitated land sparing, this constraint is 

diminishing with the emergence of commodity frontiers. Increasingly, large-scale 

agribusinesses have the capital to overcome accessibility constraints and build extensive 

networks of roads that in turn facilitate additional clearing107,142. 
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Economic incentives likely outrank policy-imposed restrictions 

Against my expectation formulated in rationale 3, land protection and governance 

quality did not assist in explaining intensification outcomes. First, the lack of identified effects 

might be due to the coarse country-level resolution of my data on governance and land 

protection. Second, impact of land protection can be offset by leakage effects64, describing 

how land use zoning leads to displacement of production outside the regions subject to 

zoning12. Third, although Ceddia et al. documented a significant effect of governance type on 

intensification spillovers27, other studies argue that economic factors can be a much stronger 

deforestation force compared with domestic legal frameworks150, which is worrisome given 

market barriers are more and more diminishing. Especially in Africa, some of the prevailing 

main agronomic constraints are expected to be overcome within the next few years through 

improved governance, economic liberalization, market deregulation, and investments into 

agricultural modernization, technology, and infrastructure103. Steadily, most governments 

have shifted from a role of planning to one of facilitation107 or of nonintervention142. With 

regard to governing intensification spillovers, such dominating influence of globalized markets 

over domestic governance would critically confine the scope of management opportunities in 

favor of land sparing.  

 

Indigenous or community land management facilitates land sparing in South America 

In Indigenous or community managed lands in South America, intensification is likely 

resulting in land sparing. In contrast, rebound effect is more probable in the absence of 

Indigenous/community management (representing any other tenure regime), thus supporting 

rationale 4. These findings are in accordance with most case studies identifying positive effects 

of Indigenous/community land management on nature conservation and forest loss 

prevention68,69,151. 

Indigenous or community land use systems often entail characteristics that make them 

less prone to the drive to increase profitability, thereby fostering land sparing instead of 

rebound effects. First, many Indigenous-led management approaches are compatible with, or 

actively support, ecosystem conservation, by “accompanying” natural processes of preserving 

and restoring ecosystems, and developing innovative ways to design conservation reserves, 

environmental policy instruments, and management programs117. Second, traditional 

Indigenous or community land use is often based on collective ownership, and fulfils the 
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requirements for successfully managing common-property resources68. These conditions 

include clearly defined boundaries, collective management, the recognition of rights to 

organize, monitoring systems, sanctions, and conflict resolution mechanisms152. 

Surprisingly, the conditioning effect of Indigenous/community land management on 

the intensification outcome was considerably lower and more uncertain in Africa and Asia. 

One explanation for Africa could be the prevalence of slash and burn farming of local 

community-managed agriculture in TDF. When land is abundant, this farming practice is 

associated with extensive forest loss60,107,153. Another reason could be that, although large 

parts of the continents’ land is covered by various forms of customary rights by Indigenous 

and local communities, many areas are not formally recognized as either owned by or 

designated for Indigenous/local communities154. For much land, the legal recipient of the 

formal title is unclear and tenure is often overlapping with public or private territories10. These 

ambiguities and the resulting uncertainty affect land management decisions and tend to 

undermine the positive conservation impacts that are usually associated with 

Indigenous/community management68,151. 

So far, many common land theories and conservation frameworks have not 

appropriately reflected the critical role of Indigenous and local communities in providing 

sustainable pathways to land-related challenges. Urbancic further argues that to reverse the 

trends of deforestation, perception of nature and property has to shift away from a Western 

anthropocentric view closer to the Indigenous worldview155. For these reasons, land 

formalization, and increased acknowledgment of Indigenous peoples’ unique ties with nature 

and land use approaches can play an important role in facilitating sustainable intensification 

outcomes10,69. 

 

The specialization trap does not manifest itself in the modeled effects 

Rationale 5 - predicting higher risk of rebound effect to resource specialized low-

income countries because of market power asymmetries - was not supported by my results. 

The outcome differs from previous findings, documenting how productivity increases trigger 

a stronger rebound effect in low income countries than in high income countries44, cause 

displacement of agricultural land to low-income countries63, or spare the largest part of land 

with potential for forest regenerations in the global North15. 
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My seemingly contradicting results might trace back to the relative homogeneity of 

countries included in my study. Although countries differed by stage of economic 

development and role of primary sector, most countries in the dry tropics held lower positions 

in global supply chains and are not among the ones most clearly documented as displacing 

environmental costs to other places (US, EU, Canada, Japan)5,45,75. Indeed, many included 

regions are hotspots of deforestation embodied in international trade5. Given this unbalanced 

distribution within susceptibility to the specialization trap, the model likely had difficulties to 

statistically explore and identify effects of trade patterns on intensification spillovers. 

Still, impact of trade patterns on intensification spillovers should be further scrutinized 

because the increasing integration of the world via international trade requires explanations 

for forest loss beyond national dynamics22,58. It is well documented that globalization is 

accelerating the separation between places of production and consumption, most often 

implying a geographic displacement of land use from the global north to the global south5,19,156. 

As a consequence, tropical forests experience ongoing and intensifying pressure from 

agricultural expansion while the global deforestation rate was reported to be decreasing5,156. 

This trend is accelerating, especially since increasing demand for livestock products and 

biofuels generated new international trade flows and pressures on tropical forests39,107, so 

that some of the major current sustainability challenges are predictable consequences of 

structural trade patterns, hampering sustainability through displacing extractive frontiers74. 

For this reason, critical sociological perspectives related to world system theories, such as the 

specialization trap and ecologically unequal exchange72,76,78 can play an important role in 

understanding intensification outcomes as social-ecological traps85 and should be better 

integrated in land system theories on spillovers and displacement12. 

 

Market opportunities supersede rural population change as main driver of forest dynamics 

Finally, the uncertainty in the modeled effect of rural population density on forest loss 

might be due to a general change in the drivers of tropical deforestation. While before the 

1990s, deforestation was mostly attributed to shifting cultivators and smallholders in rural 

landscapes107,140, today, agricultural expansion is rather driven by urban and global 

demand7,143. This shift reflects that contemporary deforestation frontiers are better explained 

by economic incentives than by local demand57,107,142, thus highlighting another weakness of 

the Borlaug hypothesis of land sparing. 
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5.2. Limitations 

My study has some limitations mainly associated with operationalizing intensification and 

related land outcomes, as well as challenges linked to input data.  

Using yield growth as measure of intensification implies a simplified, monodimensional 

representation of land-use intensity157,158. It considers only the output per land unit, resulting 

in two major shortcomings. First, it does not distinguish among land productivity increased 

through technological improvements, through higher inputs per land unit (e.g., labor and 

capital-based inputs, or technology), or through higher frequency of land use (e.g., multiple 

harvests)12. For this reason, some authors have suggested to consider more precisely 

technological progress in agriculture by the measure of total factor productivity (i.e. the 

efficiency of the overall mix of production factors (land, labor, and capital) due to improved 

technologies, farmer’s skills, and knowledge)44,60,159. Indeed, Rodríguez García et al. obtained 

slightly different results for yield and total factor productivity when using both measures of 

intensification in their analysis44. Second, by hiding the practice behind increased output per 

land unit, yield does not tell whether intensification occurred in a sustainable way, thus 

potentially missing crucial impacts on biodiversity and ecosystem properties157,160,161. 

Intensification that degrades the environment and surrounding natural systems through 

agrochemical pollution, altered species or carbon emissions incurs significant environmental 

costs, even if it spares land160. Therefore, closer consideration would be needed to scrutinize 

whether taken together, environmental costs outweighed the benefits of land sparing. 

Although these limitations constitute substantial simplifications in my analysis, they do not 

directly compromise my findings – anyways already questioning the strategy towards land 

sparing.  

Another difficulty comes from measuring the extent of spared land or rebound effect-

triggered cropland expansion. In my study, I used forest loss as a proxy for cropland expansion 

resulting in three shortcomings. First, there is no explicit data on land sparing since cropland 

abandonment is not included in my study. Only implicitly, land sparing is represented by 

comparably lower rates of forest loss given certain yield growth and considering changes in 

demand from rural population. Second, beyond expansion into forests, cropland may also 

replace other lands such as existing farmland or pasture26. Yet, this inaccuracy is negligible as 

the largest share of new cropland areas in the tropics actually comes at the expense of 
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forests60,109,110, and consequences for forest ecosystems are of most interest when 

scrutinizing conservation impacts of potential land sparing13,14,45. Third, reported forest loss 

might be due to land-cover changes other than cropland expansion. Here, particularly 

wildfires are an intrinsic part of the natural dry forest ecosystem48. However today, many fire 

events can be traced back to anthropogenic causes, often signaling clearance for agricultural 

purposes48,143. Therefore, fires in TDF, though occurring also naturally, are often part of 

frontier-making processes. Apart from that, the most important driver of deforestation other 

than cropland expansion is the creation of pasture lands for cattle ranches. Especially in South 

America, cattle farming spurred vast deforestation, often outranking cropland expansion as 

proximate cause of forest loss107,162. Yet also here, forest clearing for pasture is often 

connected to cropland expansion forming a coupled frontier: forests are initially cleared for 

ranching, but farmers shift to cropping once they have acquired enough capital163. As a result, 

cropland expansion indirectly drives deforestation by displacing grazing lands and pushing 

pasture forward into the forest frontier31,109,164 so that eventually, forest loss remains a valid 

proxy for cropland expansions in the tropics. 

Another major weakness of my study is the spatial resolution of input data and 

temporal resolution of my model. Many variables (yield change, production share of export 

and non-staple crops, proportion of protected areas, governance scores, resource 

specialization and income class) are only available on country level. The use of aggregated 

information over such large units hampers the explanation of spatially explicit land use 

dynamics occurring at finer scales. Further, the temporal resolution in my analysis constitutes 

one timestep encompassing 20 years (2001-2020). Such temporal aggregation bears the risk 

to miss finer temporal dynamics and especially neglect potential time lags of the scrutinized 

effects. To minimize this, I performed robustness checks that supported the assumed 

constancy of modeled effects. 

Additionally, there are sources of potential errors linked to the datasets I derived my 

variables from. First, data on forest cover and annual forest loss from Global Forest Watch 

based on the remote-sensing derived global forest dataset by Hansen et al.96 entails some 

inherent weaknesses. Of particular importance for my study is the uncertainty in forest-

grassland transition areas where tree cover is on the margin of the remote sensing definition 

of forest. Besides, remote sensing forest data cannot discriminate between sources of forest 

loss, thus equally reporting conversion of natural ecosystems and harvesting of non-native 
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plantations. Also, I did not include forest gain data because they were unavailable for my full 

analysis period, are less certain than forest loss, and include forest plantations. Having said 

that, the utilized data on forest cover and loss have an overall accuracy of more than 80%, 

which is further increased through aggregating on a coarser grid96. Second, the FAOSTAT 

dataset has been criticized for containing inconsistencies among countries in compiling 

information and estimates of yields, outputs, and area of farmland165, although FAO has 

officially outlined rules for collecting data and defining measures111. Nevertheless, it remains 

the only global long-term, cross-country dataset, and a comparative analysis with and without 

countries with the lowest-quality data revealed that substantive findings remained the same, 

thus promoting the use of FAO data despite the mentioned limitations43. 

Finally, there are aspects that were out of the scope of this work but that represent 

important issues requiring further investigation. First, higher quantity of agricultural 

production does not guarantee less hunger. Most famines are caused by a lack of access to 

food, rather than too little food166. To more specifically address these issues, focus needs to 

shift from agricultural production to food production, food security, or food sovereignty167. 

Second, land is source and focus of multiple meanings and values10, and provides more valued 

goods than the ones considered in my analysis. Different believes and perspectives influence 

claims regarding the use and expected benefits of land168 and especially in multifunctional 

landscapes with rich cultures and histories, reducing land use decisions to production and 

conservation does not comply with this diversity of notions connected to land166,167. Third, 

transformations of land use systems have important consequences for local livelihoods that 

were not taken into account in my study such as risk of increased social inequality and 

conflicts26. Addressing social justice is practically and ethically complex64, and the goal of 

optimizing land use regarding production and conservation might be coherent with, but is 

distinct from improving local livelihoods. Especially when ecosystem conservation is set as 

target, additional measures such as increasing nonagricultural job opportunities for 

marginalized groups should be crucially considered64. 

Generally, the challenge is to move on from thinking about higher yields as a 

unidimensional land-use strategy, being shaped by the dichotomous interplay of market 

incentives on one hand and restrictive regulations on the other hand152. Instead, the debate 

of land sparing versus rebound effect could gain from more solution-based approaches such 

as enhancing productivity through sustainable intensification or agroforestry14,169,170. 
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Moreover, common-pool resource theory could contribute to more adequately dealing with 

the wide diversity of institutional arrangements that humans craft to govern, provide, and 

manage common-pool resources152. Given the role of forests in climate change mitigation and 

carbon sequestration, the biodiversity they contain, and their contribution to rural livelihoods, 

efforts regarding just and effective land use solutions could benefit from a perspective 

towards more stewardship of land as a global commons171. 

5.3. Facilitating land sparing under today’s challenges 

Despite some conceptual and data-related limitations, my study has contributed to identifying 

and estimating causal pathways of how intensification relates to deforestation in TDF. While 

many studies remain confined by disciplinary boundaries45, I seeked to integrate concepts 

across disciplines to do justice to the fundamentally interdisciplinary nature of land systems 

science. The systemic perspective I applied to account for complexity of land systems provided 

insights on mechanisms occurring at multiple scales and allowed comparison across space. For 

this purpose of statistically investigating complex social-ecological systems, the multilevel 

Bayesian approach has proven advantageous, particularly because epistemic uncertainties 

and prior knowledge are naturally incorporated. Causal pathways derived inform about 

mechanisms but also about their robustness or associated uncertainties. 

Gained insights should feed into future strategies and policy recommendations to 

balance land-use tradeoffs – especially because available evidence suggests that given likely 

rates of technological progress and future growth in demand for land-based products, the 

world is still far from “peak cropland”20. At the same time, many TDF regions fall into early 

stages of emerging deforestation frontiers89. Given policies and management that prevent 

undesired, irreversible impacts bring more overall benefits than trying to restore land 

afterwards172, there is urgent need for forward-looking sustainability planning. Here, avoiding 

undesired spillovers of agricultural intensification plays a key role but counteracting 

interventions can only be successful when they are contextual and adaptive, and are based on 

their overall expected impacts, instead of focusing only on the direct local land impact10. My 

results revealed that there are critical conditions that make places more susceptible to 

rebound effects of intensification so that some general conclusions can be derived. 

Most importantly, improved productivity will in itself not halt deforestation but, under 

most prevailing conditions and trends of global agriculture, rather motivate agricultural 
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expansion and accelerate deforestation with devastating consequences for forest ecosystems 

in the dry tropics. Major effort to prevent such rebound effect must address economic 

incentives of commercialized commodity agriculture, because relying on market mechanisms 

risks turning intensification into an escalating driving force of cropland expansion due to the 

drive to increase profits inherent in commercialized production systems. While it must be 

acknowledged that local governance requires robust legal frameworks to curb market 

opportunities, strong restrictions on land use will be crucial to limit rebound effects of 

commodities with globalized markets and elastic demand64. Furthermore a shifting focus from 

agricultural production to food security might serve as a conceptual basis for strategies167, 

especially given non-staple production contributes little to improving food availability26. 

Supporting alternative agricultural systems and emphasizing autonomy of local, small-scale 

production as argued by the concept of food sovereignty173, can be the groundwork for action. 

Generally, policies to reduce the risk of rebound effects among smallholders or local 

communities must be fundamentally different than the ones targeted at industrial-scale, 

export-oriented agriculture64,140. In the case of staples grown by smallholders, supporting 

them to increase their yields might be more appropriate. For example, replacing extensive 

slash and burn farming systems is a precondition for slowing forest loss from shifting 

cultivation in many TDF regions but must necessarily be accompanied by actions controlling 

for rebound effect from economic incentives60,153,174. Moreover, yield-enhancing measures 

should be intentionally directed toward certain areas and not others, reflecting the findings 

on mechanisms of land restrictions. Indigenous and community-management can to some 

extent serve as a guidance for strategies against rebound effect, building on their often 

fundamentally different relation to nature and successful common-property management of 

ecosystems. With globally, up to 65% of the world's land area being covered by various forms 

of customary rights by Indigenous Peoples and local communities but only a small part of it 

formally recognized154, land formalization can play an important role. 

Finally, land use strategies should adapt to region-specific trade positions175. This is 

especially important since novel global arrangements such as transnational cooperations and 

trade agreements often entail a considerable risk that environmental regulations will be 

corrupted or diluted by powerful special interests64,176,177. To avoid reinforcing inequalities 

and asymmetric trade patterns, governance interventions need to explicitly address these10. 

Attention to prevent social-ecological traps and asymmetries reproducing global 
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socioeconomic inequalities and hampering sustainability through displacing extractive 

frontiers to economically less developed countries is thereby crucial. 

Ultimately, not all trade-offs can be addressed by managing the supply-side of land 

systems, and there is a need for more effective approaches to managing demand and 

consumption grounded on acknowledging the limits of consumption that humanity can derive 

from land10. Major transformative changes in the global economy and altered consumption 

patterns are necessary to reconcile sustainability and the needs of a growing world population, 

but how such cultural shift and transformative change could take place remains an open 

question73. 
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Appendix 

A. Yield change calculation 

I operationalized agricultural intensification as country-level yield change, calculated in a 

three-step procedure: First, yearly yield changes of different crop groups were calculated 

separately compared to the mean of the two previous years. Since by definition, spillovers 

have a time lag of ≥ 1 time step, the time period of interest was shifted one year ahead (2000-

2019) compared to forest loss (2001-2020). The smoothing step of referring change to the two 

preceding years instead of one was applied to mitigate the impact of inconsistencies that can 

likely occur in the FAO database e.g., through countries irregularly reporting production 

statistics. 

∆𝑌𝑡,𝑐 =
𝑌𝑡,𝑐

(𝑌𝑡−1,𝑐 + 𝑌𝑡−2,𝑐)/2
 𝑤𝑖𝑡ℎ 𝑐 = {𝑐𝑒𝑟𝑒𝑎𝑙𝑠; . . . ; 𝑡𝑟𝑒𝑒𝑛𝑢𝑡𝑠} 𝑎𝑛𝑑 𝑡 = {2000; … ; 2019} 

Second, yearly yield change on country level was compiled as average of crop group-specific 

yield change weighted by the respective proportion of harvested area in 2000 (𝐻𝐴𝑐). This 

procedure allowed to aggregate yield changes of different crop categories in one number 

without risking biases due to variations in harvest weight among different crop groups.  

∆𝑌𝑡 =  
∑ (∆𝑌𝑡,𝑐 ×  𝐻𝐴𝑐)𝑐

∑ ( 𝐻𝐴𝑐)𝑐
 

The resulting yield trajectories in Figure A.1 revealed that most countries experienced 

relatively steady yield dynamics over the entire study period, thus meeting the conditions to 

summarize yield over time without neglecting crucial patterns. Accordingly, as last step, I 

aggregated study-level country yield change (for staple crops, non-staple crops, and overall 

mean) as product of yearly yield change from 2001-2019. 

∆𝑌 =  ∏ ∆𝑌𝑡

𝑡

 

In most countries, yield increases were of moderate or high magnitude while some countries 

experienced overall decline in yield (Figure A.2). 
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Figure A.1: Yield change trajectories. The curves represent country-level yield changes normalized to the 
value in 2000 regarding the starting year 2000 (solid line), or the mean of the two prior years (dashed line). 
Unlike those marked in red, all included countries show relatively steady yield increases (or decreases). 
Therefore, aggregating over the entire study period does not hide significant dynamics that would 
undermine my analysis. 
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Figure A.2: Aggregated country-level yield change. Positive (negative) yield change represents increasing 
(decreasing) yield over the period 2000-2019. Only countries with TDF are included in the study. 

B. Generalized propensity score 

Hirano and Imbens131 developed the propensity score for continuous treatments (GPS) as an 

generalization regarding propensity score for binary treatment128. In binary treatment context, 

the potential outcomes (Y(1) and Y(0)) are assumed to be independent of binary treatment (D) 

given the propensity scores (e(X)): 

𝑌(1), 𝑌(0) ⊥ 𝐷|𝑒(𝑋) 

The key extension of the GPS is the weak unconfoundedness assumption, entailing that not 

joint independence of all potential outcomes is required, but instead conditional 

independence to hold for each value of the treatment131. Hence, with T as a continuous 

treatment variable, the potential outcome when T=t is unrelated to the treatment given the 

set of covariates: 

𝑌(𝑡) ⊥ 𝑇|𝑋 

With r(t, x) as the conditional density of the treatment given the covariates, the GPS is 

𝑅 = 𝑟(𝑇, 𝑋) 

The GPS has a balancing property: within strata with the same value of r(t, X), the probability 

that T=t does not depend on the value of X131. 

𝑋 ⊥ 1{𝑇 = 𝑡}|𝑟(𝑡, 𝑋) 

Once GPS is estimated for each observation, it is used to statistically balance across the 

treatment range and adjust for dissimilar treatment exposure by including the inverse of the 

propensity scores as weights to the model130. 
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C. Bayes theorem 

The crucial principle of Bayesian inference is Bayes theorem where a probability distribution 

𝑃(𝜃|𝐷)  is derived reflecting knowledge about the parameter, given both data and prior 

information. 

𝑃(𝜃|𝐷) =
𝑃(𝜃)𝑃(𝐷|𝜃)

∫ 𝑃(𝜃′)𝑃(𝐷|𝜃′)𝑑𝜃′
 

Therefore, the likelihood 𝑃(𝐷|𝜃), specifying how likely an observation of data 𝐷 is for each 

value of parameters 𝜃, is multiplied by a prior distribution 𝑃(𝜃), specifying prior knowledge 

about the probability distribution of unknown parameter values, and normalized by the term 

in the denominator, specifying the probability of the data averaged over 𝑃(𝜃)134. In other 

words, Bayesian methods combine a model of the data with prior information with the goal 

of obtaining inferences that are consistent with prior knowledge and the empirical evidence135. 

These inferences are summarized by a set of simulations of the model parameters. 

 

D. Beta distribution 

Beta regression uses the beta distribution as the likelihood for the data, 

𝐵𝑒𝑡𝑎(𝑦|𝛼, 𝛽) =  
𝑦𝛼−1(1 − 𝑦)𝛽−1

𝐵(𝛼, 𝛽)
 

where B() is the beta function. The shape parameters for the distribution are a and b and enter 

the model according to the following transformations to mean 𝜇 and precision 𝜙. 

𝜇 =
𝛼

𝛼 + 𝛽
 

𝜙 = 𝛼 + 𝛽 
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E. Predictor transformation 

To facilitate meaningful parameter interpretation, I transformed predictor variables. 

Regarding key predictor variable ∆Y, I performed a context-based standardization by 

subtracting 1, so that positive values indicate intensification while negative ones suggest 

decreasing productivity. All remaining predictors were conventionally standardized by 

subtracting the mean and dividing by the standard deviation. As a result, their coefficients can 

be interpreted in units of standard deviations which is helpful given standard deviations can 

be seen as a measure of practical significance roughly reflecting a typical difference between 

the mean and a randomly drawn observation135. For coding binary predictors (IPL and special), 

I used an indicator approach. Such approach must be applied with caution because it 

automatically implies that the absence of IPL and special is inherently more certain than their 

presence since conditioning on the latter includes one additional model parameter and 

thereby allows for more propagating uncertainty. However, in my study, the choice is 

reasoned to avoid boosting model run time due to non-linear syntax in model coding 

associated with the alternative approach of using index values for categorical variables. 

Furthermore, the assumption of both Indigenous land management and susceptibility 

regarding specialization trap adding more uncertainty to the intensification-deforestation-

relationship can be contextually justified. 
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F. Predictive checks 

Predictive checks constitute an important tool in Bayesian analysis because they inform about 

model performance. Prior predictive checks generate hypothetical data according to the prior 

specifications to assess plausibility of prior implications. In my case, prior settings proved 

appropriate because they bounded the range of possible prediction curves, while still allowing 

distributions that differ considerably from the observations (Figure F.1, left). Hence, priors 

successfully incorporated scientific knowledge into the model without predetermining 

modeling results. Posterior predictive checks provide insights about the reliability of the 

model by demonstrating how well it retrodicts the observations. Here, the final model 

demonstrated good predictive performance because comparing the replicated predictions 

sampled from the posterior predictive distribution to a random draw of observed data 

revealed high conformity (Figure F.1, right). 

 

Figure F.1: Predictive checks. Comparing observations to a sample of 100 (a) prior model predictions 
generated according to prior specifications, and (b) posterior model predictions generated according to 
modeled posterior distributions based on priors and data, provided insights about plausibility of model 
settings and reliability of model results. 
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G. Sampling diagnostics 

Trace plots show the evolution of the parameter vector over the iterations of one (or more) 

Markov chains. To gain insights about reliability of the MCMC sampling process, they were 

checked regarding stationarity (i.e., chains moving around a stable central tendency), good 

mixing (i.e., chains rapidly exploring the full parameter region), and convergence (i.e., 

independent chains moving around the same region of high probability). All outlined criteria 

were met in my model runs (Figure G.1, based on final model, exemplary for all model runs). 

 

Figure G.1: Trace plots of effect parameter estimation in final model exhibit stationarity, decent mixing 
and convergence of the independent Markov chains. These features indicate high sampling reliability. 
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H. Robustness check 

To check robustness regarding potential time lags of intensification impact on deforestation, 

I statistically investigated the effect of ∆Y from earlier time periods (1981-2020 and 1991-2010) 

on forest loss in the study period (2001-2020). Resulting model estimates demonstrate that 

conditioning present forest loss on past yield change generated similar relationships. This 

strengthens the assumption that the temporal design of my analysis did not miss significant 

time lag effects of intensification on deforestation.  

 

Figure H.1: Effect of ∆Y from different time periods on forest loss in the study period. The modeled effect 
of ∆Y from past time periods had the same direction and was of comparable magnitude as the effect from 
the study period. 
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I. Model summary 

Table I.1: Summary statistics of final model. Parameters are summarized using mean (estimate) and 
standard deviation (standard error) of the posterior distribution as well as two-sided 95% credible intervals. 
Bulk and tail ESS are diagnostics of the sampling efficiency, estimating the effective sample size that bulk 
and tail of the posterior distribution are informed by. All numbers are given in model scale (untransformed 
logit/log scale). 

Parameter Estimate Standard error Credible interval Bulk ESS Tail ESS 
      

       

Regression coefficients      
 Intercept -2.48 0.01 -2.47;-2.44 3686 2928 
 phi_Intercept 1.58 0.01 1.57;1.60 3710 3300 
 zi_intercept -2.35 0.01 -2.37;-2.33 5131 2973 
 popdens -0.06 0.00 -07;-0.06 5437 2878 
 ∆Y 0.44 0.01 0.41;0.46 3289 2941 
 ∆Y:suit 0.06 0.00 -0.05;0.06 5218 2992 
 ∆Y:nonStap 0.43 0.01 0.41;0.44 3779 3320 
 ∆Y:IPL -0.05 0.01 -0.08;-0.03 4749 2943 
 ∆Y:special 0.29 0.01 0.26;0.31 3337 3032 
 phi_YC -0.43 0.01 -0.46;-0.41 3539 2878 
 zi_access 0.45 0.01 0.44;0.47 4993 3161 
       

       

Continent-level effects     
 sd(Intercept) 1.23 0.20 0.89;1.68 1946 2102 
 sd(popdens) 0.14 0.07 0.07;0.32 1777 1869 
 sd(∆Y) 0.36 0.12 0.18;0.65 3452 2896 
 sd(∆Y:suit) 0.33 0.09 0.19;0.54 3682 3437 
 sd(∆Y:nonStap) 0.28 0.09 0.15;0.51 3580 2940 
 sd(∆Y:IPL) 0.48 0.12 0.30;0.75 4617 3584 
 sd(∆Y:special) 0.05 0.05 0.00;0.17 2509 2344 
 cor(Intercept,popdens) 0.18 0.34 -0.51;0.76 5029 2810 
 cor(Intercept,∆Y) -0.40 0.20 -0.75;0.04 4243 2978 
 cor(popdens,∆Y) -0.11 0.29 -0.64;0.45 4235 3320 
 cor(Intercept,∆Y:suit) -0.28 0.21 -0.64;0.14 4083 2987 
 cor(popdens,∆Y:suit) 0.17 0.28 -0.39;0.68 3361 3072 
 cor(∆Y,∆Y:suit) 0.31 0.26 -0.27;0.75 2543 2672 
 cor(Intercept,∆Y:nonStap) -0.15 0.23 -0.57;0.32 3904 2865 
 cor(popdens,∆Y:nonStap) 0.33 0.28 -0.27;0.81 3099 3183 
 cor(∆Y,∆Y:nonStap) -0.06 0.26 -0.55;0.44 4594 3213 
 cor(∆Y:suit,∆Y:nonStap) 0.35 0.28 -0.28;0.82 3821 3220 
 cor(Intercept,∆Y:IPL) -0.03 0.20 -0.42;0.35 4405 3825 
 cor(popdens,∆Y:IPL) -0.05 0.25 -0.51;0.44 4332 2763 
 cor(∆Y,∆Y:IPL) 0.13 0.26 -0.40;0.61 2849 3085 
 cor(∆Y:suit,∆Y:IPL) 0.40 0.22 -0.07;0.76 4331 3470 
 cor(∆Y:nonStap,∆Y:IPL) 0.05 0.29 -0.52;0.56 3025 3228 
 cor(Intercept,∆Y:special) 0.01 0.35 -0.63;0.67 7084 3149 
 cor(popdens,∆Y:special) 0.01 0.34 -0.64;0.66 5360 2852 
 cor(∆Y,∆Y:special) -0.13 0.34 -0.73;0.57 5024 3239 
 cor(∆Y:suit,∆Y:special) -0.00 0.36 -0.68;0.66 6626 2771 
 cor(∆Y:nonStap,∆Y:special) 0.06 0.33 -0.59;0.67 4341 2979 
 cor(∆Y:IPL,∆Y:special) 0.04 0.36 -0.65;0.68 4029 3525 
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J. Effect of yield change within staple-crops 

When conditioning forest loss on ∆Y calculated solely from staple crops, posterior ∆Y-effect 

estimates were qualitatively the same as the model results relying on overall mean ∆Y. 

Likewise, estimated interaction terms of effect modifiers nonStap, suit, IPL, and special 

affected the relationship of ∆Y and forest loss in an analogous manner (Figure J.1). 

 

Figure J.1: Conditional effects of staple-crops yield change interactions on continent level. Curves show 
the mean effect and the 95% credible interval of the posterior distribution for the average sample. Green 
curves are identical for every continent column. 
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